In the last chapter, we examined the structure of option prices implied by the
absence of arbitrage opportunities. The approach in that chapter provided many
interesting pricing relations, but the results took the form of option pricing bounds
rather than valuation equations. In this chapter, we develop valuation equations for
European commodity options by invoking an assumption that commodity prices are
lognormally distributed at the option’s expiration.

The approach used here also assumes that options are valued as though all
individuals in the economy are risk-neutral. This assumption is reasonable because
the value of the option does not depend on the expected rate of return of the under-
lying commodity. The concept of risk-neutral valuation of options and its equiva-
lence to risk-averse valuation are explained in section 1. Section 2 examines the
implications of the assumption that commodity prices are lognormally distributed.
The assumptions of lognormality and risk-neutrality are then used to price a Euro-
pean call option in the third section and a European put option in the fourth section.
Section 5 describes the sensitivity of option price to changes in the option’s under-
lying determinants. Section 6 presents the valuation equation for an option that
permits its holder to exchange one risky commodity for another. This option, called
an exchange option, is embedded in many types of futures contracts. Valuation
approximation methods for American options are briefly described in section 7.
Section 8 describes how the parameters of the valuation equations can be estimated,
and section 9 concludes with a brief summary.
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11.1 RISK-NEUTRAL VALUATION

The value of an option at maturity depends on the value of the underlying com-
modity. Before maturity, one can calculate the expected value of an option based
on the probability distribution of the terminal value of the commodity underlying
the option. A probability distribution is given in Figure 11.1, and an option exercise
value, X, is shown. The expected value of a call option at maturity is the profit
from the call times its probability, summed over all possible values of the under-
lying commodity. Since the value of the call is zero to the left of X, the expected
value of the call is the partial expectation to the right of X. To illustrate this pricing
principle, suppose, instead of the smooth probability distribution shown in Figure
11.1, the underlying commodity can only take on the values, 80, 90, 100, 110, and
120, with corresponding probabilities of 0.15, 0.20, 0.30, 0.20, and 0.15. Also, sup-
pose that the exercise price of the call is 100. The expected value of a call is.
therefore, (110 — 100).20 + (120 — 100).15 = 5.0.

The current value of the call is the discounted value of its expected value at
maturity. Determining this present value is a perplexing problem. Under the tra-
ditional approach of risk-averse individuals in the economy, the current value of
the call is computed by discounting the expected value of the call at expiration at
the risk-adjusted rate of return of the call. This is the approach derived by Samuel-
son in 1965. Unfortunately, his approach requires the estimation of both the
expected rate of return on the commodity and the expected rate of return on the
call. In practice, reliable estimation of these parameters is extremely difficult.

For many years, option valuation could not overcome this difficulty. A break-
through came in 1973 with a paper by Black and Scholes. They showed that one
could establish a riskless hedge between a stock option and the underlying stock,

FIGURE 11.1  Commodity Price Distribution at Time T

Prob.
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FIGURE 11.2 Commodity Price Distributions for Risk-Neutral and Risk-
Averse Individuals
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so the option is riskless relative to the stock.' Cox and Ross (1976) further showed
that they would get the correct option value if they assumed the expected return
on the stock and the expected rate of return on the call are the riskless rate, as long
as the probability distribution of the ending stock value is otherwise maintained.
To illustrate, consider the two probability distributions plotted in Figure 11.2. The
probability distribution on the right is the distribution implied if individuals are
risk-averse, and the probability distribution on the left is the distribution implied it
individuals are risk-neutral. The variances of the two distributions are the same, but
the expected value of the risk-neutral distribution is less than the expected value
of the risk-averse distribution. Under the Cox-Ross approach, the expected value
of the risk-neutral distribution is discounted at the riskless rate of interest, and under
the Samuelson approach, the expected value of risk-averse distribution is dis-
counted at a risk-adjusted rate of return. In the end, both approaches provide the
same current value for the call.

In this chapter, we use the risk-neutral valuation approach because of its
mathematical tractability. Prior to doing so, however, we will demonstrate through
an illustration using a simple binomial model that the two approaches produce the
same result. First, we demonstrate the concept of a riskless hedge. Second, we show
risk-neutral valuation. Finally, we show the equivalence of risk-averse valuation to
risk-neutral valuation.

Riskless Hedge Portfolio Using a Simple Binomial Model

The key insight in the derivation of the option pricing formulas presented in this
chapter is that a riskless hedge may be formed between the option and the under-
lying commodity. To understand the riskless hedge concept, consider the following
simple numerical problem. Suppose that the current commodity price is $40 and

'For an historical recount of the development of the Black—Scholes option pricing model, see Black
(1989).
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that at the end of three months the commodity price will be $45 or $35. The figure
below illustrates the possible commodity price movements.

$45

$35
Now, consider a European call option written on this commodity. This call has an
exercise price of $40 and expires in exactly three months. At expiration, this call

will have a value of $5 or $0, depending on whether the commodity price is $45
or $35, as is seen in the figure below.

$5
e
$0
Now, suppose we were to buy one unit of the commodity and sell n, call options.
The terminal value of this portfolio is $45 — 5Sn_ if the commodity price rises and

$35 if the commodity price falls. The uncertainty of the portfolio’s terminal value
can be completely eliminated by setting n. such that

45 - bn,. =35 or mn.=2.

In other words, if we buy one unit of the commodity and sell two calls, the terminal
value of the portfolio is certain to be $35. This is the concept of a riskless hedge
portfolio.

Due to the existence of this riskless hedge portfolio, we can price the Euro-
pean call option in the above example. The cost of forming this riskless hedge
portfolio at time O is $40 — $2c¢. Since the investment of $40 — $2¢ provides a
certain terminal value of $35, it must be the case that if we would alternatively
invest the $40 — $2c in riskless securities we would also realize a terminal value
of $35. If the riskless rate of interest over the three-month interval is 2 percent,
then the absence of costless arbitrage opportunities in the marketplace requires that

$(40 — 2¢)(1.02) = $35.

In other words, the price of the European call is $2.84.

The fact that a riskless hedge may be formed between the option and the
underlying commodity has an important implication—the price of the risky call
option can be derived without knowing the expected rate of return on the com-
modity. Even though the probabilities of the commodity price moving up to $45
or down to $35 were not known in the above example, we were still able to price
the option. In other words, the value of the call relative to the commodity is not
influenced by investor preferences. It does not matter whether an individual is risk-
averse or risk-neutral, both are willing to pay $2.84 for the call option in the above
example.
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Risk-Neutral Valuation Using the Binomial Model

Cox and Ross (1976) carry this argument one step further. They recognize that.
since the price of the call is invariant to investor preferences, nothing is lost if we
assume that everyone is risk-neutral. Under an assumption of risk-neutrality. we
can find the “‘risk-neutral” probabilities of an upstate or a downstate in the above
example. In a risk-neutral world, the expected terminal value of the commaodity 1s
simply its current price times one plus the riskless rate of interest. Hence,

$40(1.02) = $45p + $35(1 - p),

or p equals 58 percent. We then use this probability to compute the expected ter-
minal value of the call option, that is,

E(cp) = $5(.58) + $0(.42) = $2.90.

Finally, the current value of the call is simply the present value of the expected
terminal value. Under the assumption of risk-neutrality, the discount rate is the risk-
less rate of interest, so the current call price is

$2.90 .
o= $2.84,
1.02

( =

exactly the result that we obtained using the riskless hedge portfolio. It is important
to remember that this approach prices the option relative to the current commodity
price, which is assumed to be “correct.”

Risk-Averse Valuation Using the Binomial Model

The price of the option computed using the risk-neutral valuation approach is the
same as the price computed using an economy where individuals are assumed to
be risk-averse. To see this, consider a binomial framework where the commodity
price is currently at $40 and has “risk-averse” probabilities, p’, of rising to $45
and 1 — p' of falling to $35. Suppose that the expected rate of return on the con-
modity is 4 percent over the next three months, where the riskless rate of interest
is 2 percent. The difference between the two rates reflects the risk premium
demanded by individuals for holding the risky commodity. If the expected rate of
return on the commodity is 4 percent, then the risk-averse probabilities are deter-
mined by

$40(1.04) = $45p" +835(1 — '),

that is, p’ is 66 percent. The higher probability of an upstate reflects the fact that
the risk-averse individual demands a greater reward for bearing risk than the risk-
neutral individual. The expected option price at expiration is, therefore,
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E(er) = $5(.66) + $0(.34) = $3.30.

The next step in valuation is to determine the appropriate risk-adjusted dis-
count rate for the call option. In a risk-neutral economy, the rate is simply the risk-
less rate of interest since individuals are indifferent about risk. Risk-averse indi-
viduals, however, care about risk and demand higher rates of return for risky assets
or commodities. For example, under the capital asset pricing model, the expected
rate of return on the commodity is

Es=7r+(Eym —1)08s,

where E; and E,, are the expected returns for the commodity and the market port-
folio, respectively, r is the riskless rate of return, and S, is the commodity’s relative
systematic risk coefficient. Substituting in the example values, we find

04 = .02+ (Ep — .02)0s
or
(Epm — .02)8s = .02.

Since B represents the percentage change in the commodity price with respect to
a percentage change in the market portfolio, we can multiply B by the percentage
change in the call price with respect to a percentage change in the commodity price
to obtain the call option’s beta and, hence, expected rate of return. That is,

Ec =7+ (Ejl,f - T)/Br:

de/c
= B = (ggic )

But, in the case of our illustration, the percentage change in the option price is

dc/c__dch__ 5-0 40 20
c

dS/s = dS 5.3 ¢ ¢

Thus, substituting for (£,, — .02)8,, we find

20
E.=.02+.02 ( ) .

C

The present value of the call is, therefore,
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E(cy) 3.30
=7 = 40
1+E. 1+.02+ 40

so the call price is

c = ;)_M = 2.84,
1.02

exactly the same result as obtained for the risk-neutral economy.

11.2 COMMODITY PRICE AND RETURN DISTRIBUTIONS

The valuation of European call options is nearly as simple as the illustration shows.
The only additional feature that must be incorporated in the valuation of the Euro-
pean call option is a more realistic assumption about the distribution of the com-
modity price at the time the option expires. This section deals with the distributional
characteristics of the commodity prices and returns.

Before discussing specific distributional properties, a few basic definitions are
required. First, consider a sequence of periodic commodity prices beginning today
and continuing through time 7

301§1’5'21" '1ST'

The random rate of return on the commodity over the T periods is defined as being
the price relative less one, that is,

Sy/So — 1. (11.1)
The random continuously compounded rate of return over the T periods 1S
# = In(S7/So), (11.2)
or, alternatively, the random terminal commodity price is
St = Spe’. (11.3)

Note that the continuously compounded T-period return is the sum of the T con-
tinuously compounded periodic returns, that is,

>These commodity prices are observed at intervals equally spaced through time.
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.
In(Sr/So0) = Y _n(S¢/Si1). {11.4)
t=1

An assumption that is commonly used in the development of finance models
is that security returns are independently and identically distributed each period.
Thus, the expected continuously compounded periodic return is

E[h’l(.gt/gtﬂl)] = L, {(11.5)

and, by equation (11.4), the expected continuously compounded return from O to
Tis

-
Eln(S7/So)] = > _ E[n(S,/Si-1)] = uT. (11.6)

t=1

Similarly, the variance of the continuously compounded periodic return is
Var[In($,/S,_1)] = o2, (11.7)
so the variance of the continuously compounded return from 0 to 7 is

.
Var[In(S1/So)] = > _ Var[In(S./S,-1)] = 0T (11.8)

t=1

The first and the second terms in (11.8) are equal by virtue of the assumption of
independence between returns in different periods. The standard deviation of the
continuously compounded return from 0 to T is 0'\/17‘.

The second assumption that we invoke is that the continuously compounded
periodic rates of return are normally distributed with mean w and variance o’ In
this case, the continuously compounded return from O to 7 is also normally dis-
tributed with mean u7 and variance o’7. It also implies that the distribution of
stock prices is lognormal with mean

E(St) = Spe”, (11.9)
where

o= p+o?/2. {11.9a)

(A proof of this is contained in Appendix 11.1.)
Figures 11.3a and 11.3b contain illustrations of the two distributions that we
are implicitly using. The first is the normal distribution for £, which has mean uT
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FIGURE 11.3(a) Normal Distribution
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and variance o°T. The second is the lognormal distribution of ST, which has mean
S,e”’. Note that the price distribution has the intuitively appealing characteristic that
the terminal commodity price cannot fall below zero. If terminal prices were
assumed to be normally distributed, there would be some chance that the com-
modity price would go below zero.

Our use of the normal distribution is further facilitated by transforming the
continuously compounded return, £ or In(S,/S,), into a standard normally distributed
variable, Z, which has mean zero and variance one, that is,

&—pulT In(Sy/Sy) — uT

;= = - , {11.10)
oVT oVT
which may also be written in terms of the terminal commodity price
S = SperTHoVTE, (11.11)
The variable 7 has the density function
1 _ .2,
n(z) = —=e " /2 (11.12)
27

The probability that a drawing from this unit normal distribution will produce a
value less than the constant, d, is

d
1
PrOb(g < d) = / —\"/‘:_t(f—22/2d2

o0 T

= N(d). (11.13)

To evaluate the probability N(d) in (11.13), a variety of methods can be used. Poly-
nomial approximations are popular because they are simple to program. Appendix
11.2 contains two such approximations and their levels of accuracy. Another option
is to use the values of the normal probabilities tabulated in statistics textbooks and
other publications. Appendix 11.3 contains normal probabilities tabulated over the
range of d from —4.99 to +4.99.

Two properties of the cumulative unit normal density function will prove use-
ful later in this chapter. First, the probability of drawing a value greater than 4 from
a unit normal distribution equals one minus the probability of drawing a value less
than d,’ that is,

Prob(z > d) =1 — N(d). {11.14)

*This result follows simply from Prob(Z < ) + Prob(z = d) = 1 and (11.13).
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Second, since the unit normal distribution is symmetric around O, the probability
of drawing a value less than d equals one minus the probability of drawing a value
less than —d,* that is,

N(d) = 1— N(=d). (11.15)

EXAMPLE 11.1

Compute the probabilities that a drawing from a normal distribution will provide
a value that is (a) within one standard deviation of the mean, (b) within two stan-
dard deviations of the mean, and (c) within three standard deviations of the mean.

First, it should be noted that any normally distributed variable, %, can be trans-
formed into a unit normally distributed variable (i.e., a variable with mean zero and
variance one) by applying the transformation (11.10). Second, we assess the prob-
abilities using the tabulated values for the cumulative unit normal distribution. (See

Appendix 11.3)

Prob(-1<2<1) = Prob(z < 1) — Prob(z < -1)
— 84134 — .15866 = .68268

Prob(—2<2<2) = Prob(z < 2) — Prob(z < —2)
— 97725 — 02275 = .95450

Prob(—-3 <z < 3) = Prob(z < 3) — Prob(z < —3)
= .99865 — .00135 = .99730

EXAMPLE 11.2

Assume that the current commodity price is $50 and that the continuously com-
pounded rate of return has an annualized mean of 16 percent and a standard devi-

4This result is derived as follows:

d
N(d) = [ —1—% e~ /2dz,

+ 00
1
= —r:e—zz/?dz

—d \/27(

—00 \/271' —00 \/2—?1' ’

=1-— N(=d).
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ation of 32 percent. Compute the probability that the commodity price will exceed

75 at the end of three months.
First, we use equation (11.10) to transform the lognormal terminal price to a

unit normal variable value. Specifically,

_ In(75/50) — .16(.25)
B .32v/.25

Second, we round d to the nearest one-hundredth and use the probability tables:

d = 2.28416.

Prob(Sr < 75) = Prob(z < 2.28) = .98870.

Note that we are evaluating the probability of the terminal commodity price being
less than 75 because the tables find the area under the unit normal density function
from minus infinity up to the limit d. To compute the probability that the terminal
commodity price will be greater than 75, we simply take the complement or

Prob(Sy > 75) = 1 — Prob(Sy < 75)
=1 — Prob(z < 2.28)
=1-.98870 = .01130.

Note that we are introducing some error as a result of rounding the upper
integral limit d to the nearest hundredth when using the tables. We could interpolate
between table values to achieve greater accuracy, or we could use one of the poly-
nomial approximations in Appendix 11.2. Using the second polynomial approxi-
mation in the appendix provides

N(2.28416) = .98882.

EXAMPLE 11.3

Using the parameters from Example 11.2, compute the probability that the com-
modity price will fall between 40 and 60 at the end of six months.
Again, we use equation (11.10) to transform the terminal commodity price to
a unit normally distributed variable. The limits of integration are
d, In(60/50) — 16(.5) _ 000
32V/5
__In(40/50) — .16(.5)
32V5

—1.33972

d2
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The probabilities are

Prob(Z < .45220) = N (.45220) = .67444
Prob(z < —1.33972) = N(—1.33972) = .09017,

where the probabilities were again computed using the second polynomial approx-

imation in Appendix 11.2.
The final step involves differencing the probabilities, that is,

Prob(40 < S < 60) = Prob(—1.33972 < z < .45220)
= Prob(z < .45220) — Prob(z < —1.33972)
= .67444 — .09017 = .58427.

EXAMPLE 11.4

Using the parameters from Example 11.2, compute the range of the commodity
price in three months assuming that it will be within two standard deviations of its

current level.
Use equation (11.11) and set Z equal to +2. The two terminal commodity

prices are

ST] — 508.16(.25)4*.32\/%(—2) — 37.78919
Sy = 50e16(-25)+32V/25(2) — 71 66647.

EXAMPLE 115

Suppose that there is a three-month European call option written on the commodity
in Example 11.2 and its exercise price is 50. Compute the probability that the call
option will be in-the-money at expiration. The upper integral limit d is

_ In(50/50) — .16(.25) _

- —.25000.
.324/.25

The probability that the terminal commodity price will be less than the exercise
price is

Prob(Sr < 50) = N(—.25000) = .40129,
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so the probability that the commodity price will exceed the exercise price is

Prob(Sp > 50) = 1 — N(—.25000) = .59871.

EXAMPLE 11.6

Compute the expected rate of return on the commodity over a three-month interval
and the expected commodity price at that point in time.

By equation (11.9a), we know that the expected rate of return on the com-
modity is equal to the mean plus one-half of the variance of the distribution of the
logarithm of the commodity price ratio, In(S,/S), that is,

o= p+o%)2
= .16 + .32%/2
= .2112.

The expected terminal commodity price is, therefore,

E(S7) = SeoT = 50e 211225 = 52.71094.

11.3 RISK-NEUTRAL VALUATION OF EUROPEAN CALL OPTION

The European call option valuation equation is now derived under the distributional
assumptions discussed in the previous section. The valuation approach is consistent
with the numerical illustration used in Section 11.1—first, we estimate the expected
terminal value of the call, and then we discount the expected terminal value to the
present. The theoretical call price is simply

c=e "TE@Er). (11.16)

To evaluate the expected terminal call price, we assume that the expected rate of
return on the commodity equals the riskless rate of interest (risk-neutrality) and that
the commodity prices are lognormally distributed at the option’s expiration. To dis-
count the expected terminal call price to the present, we assume that the expected
rate of return on the call equals the riskless rate of interest (risk-neutrality).

In order to make equation (11.16) operational, we need to evaluate the term
E(é,), the expected terminal value of the call option. If 57 is assumed to be log-
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normally distributed, the distribution of the terminal call price, &, 1s known since
&y 1s simply

_ {§T~X for S > X
ér = (11.17)

0 for St < X.

With the terminal commodity price having a lognormal distribution, condition
(11.17) implies that the terminal call price has a truncated lognormal distribution
and that the mean of the call price distribution is:

E(ér) = E(Sr — X|Sy > X) + E(0|ST < X)
= E(St — X|Sr =2 X)
= E(Sr|St > X) — E(X|ST > X)
= E(S7|Sr > X) — XProb(Sr > X), (11.18)

where Prob(S; = X) is the probability that the commodity price exceeds the option’s
exercise price at expiration. To evaluate E(¢;), we must evaluate each of the two
terms on the right-hand side of (11.18). We will begin with the second term.

Evaluation of XProb(S; = X)
Letting L(S;) be the lognormal density function of S, the term XProb(S; = X), is

+o00
XProb(Sr > X) = X / L(S7)dSt.
X

The easiest way to evaluate the integral is to perform a change of variables on S;.
Equation (11.10) shows us the transformation that we apply to Sr. The upper and
lower limits of integration for the new variable z are obtained by substituting + %
and X for S; in (11.10). The limits are therefore +c and [In(X/S) — ,u,T]/U\/i
respectively. Thus,

+o0
XProb(St > X) =X X 8y n{z)dz
avT
In(S/ X)+uT
a VT
=X i n(z)dz
= X N(ds), (11.19)

where d, = [In(5/X) + ;LT]/(U'\/?‘ ). In other words, the value N(d,) is the probability
that the commodity price will exceed the exercise price at the option’s expiration.
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Evaluation of E($.|Sr = X) i
The evaluation of the first term of equation (11.18), E(S,|S; = X), is slightly more
difficult. The initial steps are as follows:

N +oc
E(ST|ST > X) = / STL(ST)dST
X

+
_/ o Sey.T—}—a\/’Tze—zz/Q» 1 dz
1

n(X/S)_pT V2
oVT
+ —
:Se“T/ 00 e,02'1"/2—02’I’/:.’+o'\f’l"z~—z;"/2 \/1___dz
In(X/8)—uT
+ _
— SepT+a'2T/2[ > em(d\/T——z)Q/’z_LMdz
IEYEIE V2
ln(S/X):i»uT +(T\/T
— SepT+62T/2 ovi 6—y2/2 ——1—~dy
—00 Vs
2
= SerT+o TI2N(dy), (11.20)

where d, = [In(8/X) + ;.LT]/(a'\,/f’ ) + 0'\/7—" . The steps in (11.20) are as follows:
(a) the conditional expected value is expressed in integral form where L(S,) is the
lognormal density function for S5 (b) a change of variables is performed on Sy,
and the density function of the standardized normal variable, z, is written out; (c)
Se*T is factored out of the integral and the square in the exponent within the integral
is completed; (d) ¢”*" is factored out of the intergral and the remaining expression
in the exponent within the integral is simplified; (e) a change of variables y =
0'\/1—” — z is performed and the limits of the integration are redefined;’ and (f) the
expression is simplified.

Evaluation of E(c;)

To summarize, under the assumption that commodity prices are lognormally dis-
tributed and that individuals are risk-neutral, we are attempting to value a European
call option. We are in the process of valuing the expected terminal value of the call
option, E(¢7). Substituting equations (11.20) and (11.19) into equation (11.18), we
now have

E(ér) = Se*T+7° TN (d,) — X N(d2) (11.21)

SWhere y = —z, the following property holds:

o0 d
—2?2 1 _f —v?2_1
e —dz = € —dy.
/_d Vo oo Vo y

This property is used in simplifying (11.20).
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where
In(S/X) + uT
dy = + \/—f, (11.21a)
' ovT ’
In(S/X) + uT
dy = . 11.21
2 oI T { b)

We will not stop here, however. The expected rate of return of the commodity
in the integral limits d, and d, is the mean of the logarithm of the commodity price
ratios—E[In(S,/S,_,)]. We would like to express the expected rate of return of the
commodity in terms of the raw price relatives—FE(S,/S). We know that

E(Sr/S) = T = elpto™ /AT (11.22)

Now, recall that we have invoked an assumption of risk-neutrality. The value of «
in (11.22) is the expected rate of return on the commodity, and, in a risk-neutral
world, the expected rate of return on the commodity equals the cost-of-carry rate,
b (i.e., the cost of interest plus any additional costs). Substituting b for « in (11.9a)
and isolating w, we get

p=>b—o?/2. (11.23)
Substituting this into (11.21), we get

E(er) = Se’TN(d,) — X N(da), (11.24)

where

g = In(S/X) + (b+ .506%)T

. e : (11.24a)
d, = In(S/X) + (b — .50%)T
oVT ’

=d; —oVT. (11.24b)

Current Value of Call

With an explicit valuation of E(&;) in hand, we can substitute into equation (11.16)
to find the valuation formula for the European call option on a commodity with
cost-of-carry rate b, that is,

(S, T; X) = Se® TN (dy) — Xe " N(dz), (11.25)
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where

_ In(S/X) + (b+ .50%)T
oVT ’
dy =dy —oVvT.

dy (11.25a)

{11.25b)

The interpretation of the terms in (11.25) is fairly straightforward given our risk-
neutral valuation approach. The term Se“”""N(d,) is the present value of the
expected benefit of exercising the call option at expiration, conditional on the ter-
minal commodity price being greater than the exercise price at the option’s expi-
ration. The term N(d,) is the probability that the commodity price will be greater
than the exercise price at expiration. The present value of the expected cost of
exercising the call option conditional upon the call being in-the-money at expiration
is Xe ""N(d,).

EXAMPLE 11.7

Compute the price of a three-month European foreign currency call option with an
exercise price of 40. The spot exchange rate is currently 40, the domestic interest
rate is 8 percent annually, the foreign interest rate is 12 percent annually, and the
standard deviation of the continuously compounded return is 30 percent on an annu-
alized basis. Note that the cost-of-carry rate, b, is, therefore, —4 percent.

c = 406(—.04~—.08).25N(d1) o 4064.08(.25)N(d2),

where

4, = In(40/40) + (=04 + 5(:30)%1(:28) _ 03,

.30v/.25
dy = dy —.30V25 = —.1417.

The values of N(d,) and N(d,) are .5033 and .4437, respectively, so the European
call option price is

¢ = 38.818(.5033) — 39.208(.4437) = 2.14.

11.4 RISK-NEUTRAL VALUATION OF EUROPEAN PUT OPTION

The risk-neutral valuation approach can be applied to the European put option pric-
ing problem to find the put’s valuation equation. A simpler way, however, is to
combine the European put-call parity relation from the last chapter with the Euro-
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pean call option valuation equation (11.25). In the absence of costless arbitrage
opportunities in the marketplace, the European put-call parity relation,

(S, T; X) — p(S,T; X) = Sel= 77T — Xe™™7, (11.26)
holds at all points in time. Isolating p(S,T;X) in (11.26), we get
p(S,T; X) = c(S,T; X) — Sel™7T 4 Xe™ T (11.27)

Substituting the European call option valuation equation (11.25) for the term
<(S,T:X), we find that the valuation equation for a European put option on a com-
modity 1s

p(S,T; X) = ST N(d)) — Xe "' N(dy) — Se® 7T + Xe™ ™
= Xe "™T[1 — N(dy)] — Se®=7T[1 — N(dy))
= Xe "TN(=dy) — ST N(—d,), (11.28)

where

_ In(S/X)+ (b+ .50*)T
ovVT ’
dy = d; — oVT. (11.28b)

dy (11.28a)

Thus, the valuation of the European put option follows straightforwardly from
European put-call parity and the valuation of the European call option.

The interpretation of the terms in (11.28) parallels the risk-neutral interpre-
tation for the call. The term Xe ""N(—d,) is the present value of the expected ben-
efit of exercising the put option at expiration conditional upon the terminal com-
modity price being less than the exercise price at the option’s expiration. Recall the
put option provides the right to sell the commodity so the benefit from holding the
option is the cash we receive when we exercise the option, that is, X. N(—d,) is
the probability that the commodity price will be less than the exercise price at expi-
ration. Note that it is the complement of N(d,), the probability that the terminal
commodity price will exceed the exercise price. The present value of the expected
cost of exercising the put option conditional upon the put option being in-the-
money at expiration is Se””""N(—d,). If we exercise the put, we must forfeit the
commodity as fulfillment of our obligation so the present value of the expected
terminal commodity price conditional upon exercise is our cost today.
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EXAMPLE 11.8

Compute the price of a three-month European foreign currency put option with an
exercise price of 40. The spot exchange rate is currently 40, the domestic interest
rate is 8 percent annually, the foreign interest rate is 12 percent annually, and the
standard deviation of the continuously compounded return is 30 percent on an annu-
alized basis. Note that the cost-of-carry rate, b, is, therefore, —4 percent.

p= 406-——.08(.25)N(_d2) _ 406(».04—.08).25N(_d1),

where

In(4 —.04 + .5(.30)2](.2

4y = n(40/40) + [—.0 ts( 0)2](.25) _ 0083,
30v/.25

dy = dy — .30V.25 = —.1417.

The values of N(—d,) and N(—d,) are 5563 and .4967, respectively, so the Euro-
pean put option price is

p = 30.208(.5563) — 38.818(.4967) = 2.53.

Note that this result, together with the result of Exercise 11.7 verifies the put-call
parity relation (11.26), that is,

2.14 — 2.53 = 38.818 — 39.208.

11.5 PROPERTIES OF THE EUROPEAN CALL AND PUT OPTION
PRICING FORMULAS

The valuation equations for the European call and put options are

(S, T; X) = Se®™TN(d1) — Xe "TN(d2) (11.25)

and

p(S,T;X) = Xe "' N(=dy) - Se="T N(—dy), (11.28)
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respectively, where

_ In(8/X) + (b + .50¢2)T

d _
' ovT

and
dz = dl - O’\/T.

The option price depends on six variables—S, X, b, r, o, T. In this section, we
analyze how the European call and put option prices respond to changes in the
underlying option variables. Each of the variables will be discussed in turn begin-
ning with the commodity price. The derivations of each of the expressions below
are contained in Appendix 11.4.

Change in Commodity Price
The change in the option price with respect to a change in the commodity price 1s
called the option’s delta. The delta of a European call option is

Jdc .
(b—7)T ) 2
A, = 35 =e N(d1) >0 (11.29a)

The call option’s delta is unambiguously positive in sign, implying that an increase
in commodity price causes the call price to increase. The result is intuitive since
the call option conveys the right to buy the underlying commodity at a fixed price
and the underlying commodity has just become more valuable.

Figure 11.4 shows the how the value of a European call option changes as
the underlying commodity price changes. The option has three months to expira-
tion. Notice that when the call option is out-of-the-money, its slope is fairly flat.
Out-of-the-money call options have very low delta values; that is, they do not
respond very quickly to changes in the commodity price. As the commodity price
increases and the call becomes at-the-money and then in-the-money, the slope
becomes steeper and steeper. Where the option is very deep in-the-money, the delta
value is nearly one, and the call price changes in a one-to-one correspondence with
the commodity price. Figure 11.5 shows the option’s delta value as a function of
the commodity price.

The put option’s delta is

A, = gg = —e""ITN(-d,) < 0. (11.29b)

This derivative is negative because an increase in the commodity price makes the
put option less valuable. Again, it can be shown that the sensitivity of the put price
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FIGURE 11.4 European call option price (c) as a function of the under-
lying commodity price (S). The commodity price range
is from 50 through 150. The option has an exercise price
(X) of 100 and a time to expiration (T) of three months.
The cost-of-carry rate (b) is 8 percent, and the riskless
rate of interest (r) is 8 percent. The standard deviation
of the logarithm of the commodity price ratios (o) is 30
percent.
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to changes in the underlying commodity price is itself sensitive to the “‘moneyness’
of the option. Figure 11.6 shows this sensitivity for a European put option with
three months to expiration. The in-the-money option has a steeper slope than the
at-the-money option, which, in turn, has a steeper slope than the out-of-the-money
option. Figure 11.7 shows the put’s delta value as a function of the underlying
commodity price.

Percentage Change in the Commodity Price

It is often the case that, instead of the dollar change in the option price with respect
to a dollar change in the underlying commodity price, one is interested in the elas-
ticity of the option price with respect to the commodity price. This elasticity, called
the option’s eta, is the percentage change in the option price with respect to the
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FIGURE 11.5 European call option delta (A,) as a function of the
underlying commodity price (S). The commodity price
range is from 50 through 150. The option has an exer-
cise price (X) of 100 and a time to expiration (T) of three
months. The cost-of-carry rate (b) is 8 percent, and the
riskless rate of interest (r) is 8 percent. The standard
deviation of the logarithm of the commodity price ratios
(o) is 30 percent.
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percentage change in the commodity price. The elasticity of the call price with
respect to the commodity price is greater than one,” that is,

t

S .
e =Ac - = e(b—mT N(dl)% > 1, {11.30a)

The elasticity of the call price with respect to the commodity price can be shown to be greater
than one by rewriting (11.30a) as

1

Tle = 1_ Xe-"TN(ds)
Sefb—r)TN(dl)

The last term in the denominator is less than one because the European call price cannot be less than
zero, therefore, the value of 7, must be greater than one.
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FIGURE 11.6 European put option price {p) as a function of the under-
lying commodity price (S). The commodity price range
is from 50 through 150. The option has an exercise price
(X) of 100 and a time to expiration (T} of three months.
The cost-of-carry rate (b) is 8 percent, and the riskiess
rate of interest (r) is 8 percent. The standard deviation
of the logarithm of the commodity price ratios (o} is 30
percent.
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and the elasticity of the put price with respect to the commodity price is less than
minus one,’ that is,

S
= A, = ——e(b~r)TN(‘—dl)E < -1 (11.30b)

Table 11.1 contains option prices, delta values and elasticities for alternative
prices of the underlying commodity. It is interesting to note that (i) the elasticities
have very large magnitudes and (ii) the magnitudes are larger for farther out-of-
the-money options. If someone has a strong belief that the price of an individual
commodity will rise, an investment in a call option will provide a larger rate of

"The proof that 7, is less than — 1 follows along the same lines as the proof that 7. > ! in the
previous footnote.
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FIGURE 11.7

Part Three Options

European put option delta {A,)) as a function of the
underlying commodity price (S). The commodity price
range is from 50 through 150. The option has an exer-
cise price {X) of 100 and a time to expiration (T} of three
months. The cost-of-carry rate (b) is 8 percent, and the
riskless rate of interest (r) is 8 percent. The standard
deviation of the logarithm of the commodity price ratios
(o) is 30 percent.

Delta Value of Put Option

TABLE 11.1

100
Commodity Price (S)

Simulated stock index call and put option prices, deltas, etas, and gammas

for option parameters: X = 100, b = .08, r = .08, 7' = .25, and o = .30.

Commodity
Price
S

80
90
100
110
120

Call Put
Price Delta Eta Gamma Price Delta Eta  Gamma
& Ac e Ye P Ap U Yp
537 .100 14.952 014 18.557 —-.899 -3.878 .014
2.494 310 11.207 .026 10.514 -.689 ~5.900  .026
6.961 .582 8.367 .026 4.981 417 -8.380 026
13.954 .800 6.310 .016 1.974 -.199 -11.109  .016
22.645 .922 4.889 .008 665 077 -13.924  .008
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return than an investment directly in the commodity and, moreover, an investment
in an out-of-the-money call will provide a greater rate of return than an in-the-
money call.

These greater rates of return are not without a corresponding increase in risk,
however. In fact, just as the rates of return on the options are proportionally related
to the rate of return on the commodity, the risk or “beta’” of an option is propor-
tionally related to the beta of the commodity, that is, 8. = 71.Bs and B, = 1,Bs
The increase in the expected rate of return as a result of holding a call option is
exactly what is justified on the basis of the capital asset pricing model.

Change in Delta

Earlier we described the option’s delta, how the option price changes as the com-
modity price changes. Related to this concept is the option’s gamma—the change
in delta as the commodity price changes. The expression for the gamma of a call
option 18

po= 08 _ 7 Tndy) (11.31a)
° 08 SaVT ’ '

and the gamma for a put is

_ 08, _ T nldy) _ (11.31b)
’7]9 - BS - SO"\/T = Ye ’ .

where n(d,) is the density at d,. In short, this value tells you how quickly the delta
changes as the commodity price changes. Because an option’s gamma is largest
when the options are approximately at-the-money, these options are the hardest to
hedge. In addition, if you believe that the commodity price is about to move in one
direction or another (recall the motivation for placing a volatility spread), the at-
the-money spread will maximize the portfolio’s dollar response to underlying com-
modity price movements. Figure 11.8 shows the option gamma as a function of the
underlying commodity price.

Change in the Exercise Price
The partial derivatives of the call and put option prices with respect to the exercise

price of the option are

dc —rT
5}: = —€ N(d‘z) < O (11-328)
and

ap . _=rT
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FIGURE 11.8 European option gamma (y, = v,} as a function of the
underlying commodity price (S). The commodity price
range is from 50 through 150. The options have exercise
price (X) of 100 and time to expiration (T) of three
months. The cost-of-carry rate (b) is 8 percent, and the
riskless rate of interest (r) is 8 percent. The standard
deviation of the logarithm of the commodity price ratios
(o) is 30 percent.
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respectively. Note that, if the exercise price of the options increases, the value of
the call option diminishes and the value of the put option increases. This follows
from the fact that the call would become more out-of-the-money and the put more
in-the-money.

The partial derivatives of the option prices, with respect to the exercise price,
are of little practical value in the sense that once the option is created, the exercise
price does not change. They are expressed here only in the interest of completeness.

Change in the Cost-of-Carry Rate

The change in the call option price with respect to a change in the cost-of-carry
rate is

g% = TSe®"TN(d;) > 0. (11.33a)
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As the cost-of-carry rate increases, the call option value increases, holding constant
the spot price and the other variables. The higher the cost of carrying the underlying
commodity, the greater the rate of appreciation in the commodity price and hence
the greater the call option value. The magnitude of the derivative is small, however.
For the foreign currency call option valued in Example 11.7, the partial derivative
with respect to the cost-of-carry rate is 4.884. In other words, if the cost-of-carry
rate on the underlying commodity increases by 100 basis points, the call price will
increase by approximately five cents.

The partial derivative of the put option price with respect to the cost-of-carry
rate is

OP _ _pge-"TN(—dy) < 0. (11.33b)
ob
As the cost-of-carry rate increases, the expected rate of appreciation in the com-
modity price increases and hence the value of the put option declines. The numer-
ical value of this partial derivative for the put option in Example 11.8 is —4.8200.

Change in the Interest Rate
The change in the call option price with respect to a change in the riskless rate of
interest is

dc

“~ =TXe "TN(dy) > 0. (11.34a)
or

The call price increases with an increase in the interest rate because the present
value of the exercise price decreases. The value of this derivative is 4.3489 for the
call option in Example 11.7.
The partial derivative of the put option price with respect to the riskless rate
of interest is
O _ _rxe="TN(—ds) < 0. (11.34b)
ar
Here the sign is negative because, as the riskless rate of interest increases, the pres-
ent value of the exercise price received upon exercising the option decreases. The
value of the derivative for the put option in Example 11.8 is —5.4531, implying
that an increase in the interest rate of 100 basis points reduces the option value by
about five cents.

Change in the Volatility

The change in the option price with respect to a change in the volatility® of the
underlying commodity return is called the option’s vega. The vega of a European
call option is

*Up to this point, we have used the term “standard deviation” to describe the dispersion of com-
modity returns, o In the industry, o is more typically referred to as the volatility or the volatility rate
of the underlying commodity returns, and we adopt that convention for the remainder of the chapter.
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<

dc o
8; = S (dy )WT > 0. (11.35a)

Vega, =
The sign of the derivative is positive, indicating that as the volatility of the under-
lying commodity return increases, the call option value increases. The intuition for
this result is that an increase in the volatility rate increases the probability of large
upward movements in the underlying commodity price. The probability of large
downward commodity price movements also increases, however, it is of no con-
sequence since the call option holder has limited liability.

The numerical value of the call option vega implies that the options price is
more sensitive to volatility than it is to either the cost-of-carry rate or the interest
rate. The option in Example 11.7 has a vega of 7.7428. An increase in volatility
of 100 basis points increases the call’s price by nearly eight cents.

The put option’s vega is the same as that of the call, that is,

0 e ,
Vega,, = 8-5 = ST (d))VT = Vega, > 0. (11.35b)

The put option value also increases with an increase in volatility since the proba-
bility increases of a large commodity price decrease. The numerical value of the
vega for the put option in Example 11.8 is, therefore, also 7.7428.

Figure 11.9 shows the option’s vega as a function of the commodity price.
Note that the vega has its highest value where the option is approximately at-the-
money.

Change in the Time to Expiration
The partial derivative of the option price with respect to the time to expiration
parameter is called the option’s theta. The theta of the call is

i
O = 7= = Se@—”Tn(dl)Ef}T +(b— 1) ST N(d,)

+rXe "TN(dy) <> 0. {11.36a)

The expression shows that the sensitivity of call option price to changes in the time
to expiration of the option is the sum of three components. The first term on the
right-hand side is positive and reflects the increase in option price due to the fact
that an increase in the time to expiration increases the probability of upward price
movements in the commodity price and, hence, increases the value of the option.
The second term may be positive or negative depending on whether the cost-of-
carry rate, b, is greater than or less than the interest rate, r. If & > r, the term is
positive since as the time to expiration increases the present value of the expected
terminal commodity price grows large (recall that the underlying commodity price
grows at rate b while the discount rate of the terminal value of the option is r).
Finally, the third term is positive. As time to expiration increases, the present value
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FIGURE 119 European option vega as a function of the underlying
commodity price (S). The commodity price range is
from 50 through 150. The options have exercise price
(X) of 100 and time to expiration (T) of three months.
The cost-of-carry rate (b) is 8 percent, and the riskless
rate of interest (r) is 8 percent. The standard deviation
of the logarithm of the commodity price ratios (o) is 30
percent.
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of the exercise price grows small. Note that the only case where the overall value
of theta is unambiguously positive is when b = r.

For the call option in Example 11.7, b < r, so we know that theta need not
be positive. The value of theta is, nonetheless, positive at 3.6927. In other words,
the option price increases as the time to expiration increases. To see the origin of
this result, we examine the values of each of the three terms in the derivative:
4.6457, —2.3446 and 1.3916. The largest component of the call option’s theta in
this illustration, 4.6457, comes from the increased probability of large commodity
price movements. Because b < r, the second term is negative. As the time to expi-
ration increases, the value of the call option falls because the commodity price is
expected to increase at a lower rate than the riskiess rate of interest. The value of
this component is — 2.3466. Finally, the value of the third term is 1.3916, indicating
that the call option value increases because the present value of the exercise price
is reduced as the time to expiration is increased.
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Theta provides information on the decay in option value as the time to expi-
ration elapses. The theta of the call option in Example 11.7 is 3.6927. This implies
that the time decay of this option is 3.6927 X 1/365 or slightly over one cent over
the next day and 3.6927 X 7/365 or about seven cents over the next week, holding
other factors constant.

The theta of the European put option is

»

O = ar

= ST p(d)) -7 — (b—1)Se" TN (~d
(@)% = 6= 1) (~d)

—rXe TN (—dy) <> 0. (11.36b)

The interpretation of the terms in the expression of the put option’s theta parallel
those of the call option. The first term is the increase in put value resuiting from
the prospect of larger commodity price movements when the time to expiration is
longer. The second term is negative if b > r. In the case of the put, option value
increases when the cost-of-carry rate is below the interest rate. The third term is
positive. It reflects the fact that an increase in the time to expiration delays the
receipt of the exercise price and hence reduces the put option value. The value of
the theta for the put option in Exercise 11.8 is 5.2143, with the individual com-
ponents of the sum being 4.6457, 2.3136, and — 1.7450.

11.6 EUROPEAN EXCHANGE OPTION

Closely related to the European commodity options with a fixed exercise price are
European options that entitle the holder to exchange one commodity for another.
Such options are commonplace, although they are usually embedded within some
other contract. In Chapter 8, for example, we discussed the fact that the T-bond
futures contract permits delivery of any of a number of eligible T-bond issues and
that the short will deliver the cheapest. The short, in this instance, has a exchange
option that permits him to exchange the T-bond bond he presently holds for a
cheaper issue, should a cheaper issue become available. Many agricultural futures
contracts also have such an exchange option or quality option embedded in their
contract design.

The derivation of the exchange option formula can follow the same risk-neu-
tral valuation approach that was used earlier in the chapter, so the approach will
not be repeated here. The valuation equation of a European exchange option that
permits its holder to exchange commodity 2 for commodity 1, that is, to “‘buy”
commodity 1 with commodity 2, is

(81, T; S2) = S1e TN (dy) — SoelP27 TN (dy), (11.37)

where

. 1n(51/52) + (bl - bz + .50’2)T
oVT ’

dy (11.37a)
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dy =dy — VT, (11.37b)

and

0'2 :O'%+(I'22-2,O120’10'2. (11.37c¢)

Variables subscripted with 1 apply to commodity 1, and variables subscripted with
2 apply to commodity 2. The meaning of each variable is described earlier in the
chapter.

An important observation regarding (11.37) is that the call option formula
described earlier in this chapter is simply a special case of this valuation equation.
Suppose we allow commodity 2 to be the riskless asset. The current price of com-
modity 2, S,, is, therefore, Xe™ ", the cost-of-carry rate, b,, is the riskless rate of
interest, r, and the standard deviation of return, o,, equals zero. With these substi-
tutions, equation (11.37) becomes the European call option formula (11.25).

Another important observation regarding (11.39) is that the value of a call
option to “buy” commodity 1 with commodity 2, «(S,,T; S,), equals the value of
a put option to “sell” commodity 2 for commodity 1, p(S,,7;S,). In the case of
the call, the option is exercised at expiration if the proceeds S, , — S, > 0O, that
is, if the terminal price of commodity 1 exceeds the terminal price of commodity
2: otherwise, it is not exercised. In the case of the put, the option is exercised at
expiration if the proceeds S, — S,, > 0; that is, if commodity 2 is cheaper than
commodity 1; otherwise, it is not exercised. But the structure of these two valuation
problems is identical, so

C(SI,CT'; 82) :p(Sg,CIW; S}) {11.38)

Returning to the T-bond futures contract specification, recail that at the end
of Chapter 8, we argued that the futures price equals the price of the cheapest-to-
deliver bond less the value of the quality option. If the T-bond futures contract has
only two T-bond issues eligible for delivery, the valuation formula (11.38) can be
used to value the quality option. With more eligible issues, the model must be
generalized.’

EXAMPLE 11.9

Suppose that there are two bonds eligible for delivery on the T-bond futures con-
tract. The time to expiration of the futures is three months. Bond 1 is currently the
cheapest to deliver. Its price is 99 and its coupon is 6 percent. Bond 2 is priced at

®The exchange option formula for the two-asset case where both assets have a cost-of-carry rate
equal to the riskless rate of interest was derived by Margrabe (1978). The formula presented here gen-
eralizes the Margrabe result to allow the assets to have different carry rates. The n-asset exchange option
was later developed by Margrabe (1982).
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102, and its coupon is 9 percent. The standard deviation of the continuously com-
pounded return is 15 percent for bond 1 and 12 percent for bond 2. The correlation
between their rates of return is .9. The riskless rate of interest is 7 percent. Compute
the value of the exchange option. For the sake of simplicity, assume that both bonds
have conversion factors equal to one and that coupon interest is paid continuously
over the futures contract’s remaining life.

p(BQ,T; Bl) — 998{.07——.06—--.07).25N(d1) . 1026('07~'09_'07)'25N(d2),

where

4 = In(99/102) + (.07“:?96 — .07 + .09 + .502).25

' oV 25 ’
do = dy — or\/2F),
and
0? = 152 4+ .12%2 — 2 x .9 x .15 x .12 = .0045.

Substituting o = .0671 into the expressions for d, and d,, and then the values
d, = —.6495 and d, = —.6830 into the option formula shows that the value of

the exchange option is .50.

11.7 VALUATION OF AMERICAN OPTIONS

We noted in Chapter 10 that the American option is worth at least as much as the
European option because of the fact the American option may be exercised early.
The value of the American call and put can, therefore, be written as

C(S,T;X) =c(S,T; X) +ec(S5,T; X), {10.9a)
and
P(S,T;X) =p(S,T; X) +ep(S5T; X). {10.9b)

The value of the early exercise privilege, €.(S,T:X), depends on the relation between
the cost-of-carry rate, b, and the riskless rate, r.

In the case of the call option, the early exercise privilege has value only if
b < r. In this case, the cost of carrying the underlying commodity is less than the
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cost of funds tied up in the commodity. As a result, it may be beneficial to exercise
a call option and take possession of the commodity because the earnings on the
commodity exceed the cost of funds tied up in the commodity. For example, it may
be desirable to exercise a call option on a foreign currency to earn the interest on
the foreign currency if the foreign interest rate exceeds the U.S. rate. If b = r, early
exercise of a call is not optimal because there is a cost to holding the commodity.
By continuing to hold the call option, all the potential price gains achievable from
holding the commodity are also achievable, and the cost of holding the commodity
is avoided. For example, it is never optimal to exercise early an option on a stock
that does not pay dividends (i.e., b = r).

In the case of the put option, early exercise is always a possibility. Intuitively,
early exercise is desirable if the profit from the put option is sufficiently large so
that the interest that could be earned by investing the profit now exceeds the pos-
sibility of an even greater profit from continuing to hold the put.

Explicit analytical solutions for the price of American options are unknown.
[f the American option will not be exercised early, the European option formula
holds. But if early exercise could be desirable, the American option value exceeds
the European value by an amount (frequently quite small) that can only be approx-
imated by numerical techniques. Two approximation techniques that are commonly
applied in practice are the binomial method of Cox, Ross, and Rubinstein (1979),
and the quadratic approximation method of Barone—Adesi and Whaley (1987). The
binomial method is used in Chapter 13 to value a put on a dividend-paying stock,
and the quadratic approximation is used in Chapter 14 to value stock index and
stock index futures options.

11.8 ESTIMATION OF THE OPTION PRICING PARAMETERS

The European option pricing models (11.25) and (11.28) and the American option
approximation methods to be discussed in Chapters 13 and 14 are, in general, very
easy to use. The exercise price, X, and the time to expiration, 7, are terms of the
option contract. The commodity price, S, the riskless rate of interest, r, and the
cost-of-carry rate, b, are easily accessible, market-determined values.” The most
difficult parameter to estimate (and, for that matter, the parameter estimate about
which investors most commonly disagree) is the standard deviation of the rate of
return of the underlying commodity. In general, two methods are used—historical
volatility estimation and implied volatility estimation.

" As a proxy for the riskless interest rate, T-bill rates are typically used. Recall from footnote 2 in
Chapter 8 that the continuously compounded, effective annual interest rate, , is obtained by computing

. In(100/Bq4)
= 7 ,

where B, is the price of the T-bill (e.g., 100 less the average of the T-bill's bid and ask discounts) and
T is the time to maturity of the T-bill expressed in years.
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Historical Volatility Estimation
Earlier in this chapter, we assumed that the mean and the standard deviation of the
continuously compounded rates of return, R, = In(S,/S,-,), are constant through
time. The volatility parameter in the option pricing formula is the future volatility
rate of the commodity. If the volatility parameter is stationary through time, how-
ever, we can use past returns to estimate historical volatility and then use historical
volatility as the estimate of future volatility.

The estimator most commonly used for calculating the variance of the rate
of return on the commodity, o7, is

T
1
t=1

where 7 is the number of time series return observations used in the estimation,'’
R, is the continuously compounded rate of return on the commodity in month 7 [i.e.,
In(S,/S,_ )], and [ is the estimate of the mean rate of return,

"
1
fi = — Z R,. {(11.40)

An estimate of the standard deviation of the rate of return on the commodity can
be obtained by taking the square root of the variance estimate, that is, &,
G

The rates of return used in equations (11.39) and (11.40) may be for any
length period—a day, a week, or a month. In general, the shorter the distancing
interval between price observations, the better since more information goes into the
estimate. So weekly returns are certainly superior to monthly returns in the esti-
mation of volatility, holding the overall length of the estimation period constant.

Following the same logic, it would seem daily returns are a better source of
information than weekly returns. This is generally not the case, however. Stock
returns, for example, demonstrate seasonality by day of week.'” In general, stock
returns on Fridays are significantly higher than average, and those on Mondays are
significantly lower than average. Other commodities also have day-of-the-week sea-
sonality, but the seasonality has a different structure. Furthermore, independent of
the underlying commodity, using daily data forces the investigator to decide how
weekend returns should be accounted for. Should the rate of return from Friday
close to Monday close be counted as a 3-day rate of return (calendar days) or a
1-day rate of return (trading days)? Because of the empirical anomalies associated
with daily returns and because the issue of how to handle weekend returns has not
been satisfactorily resolved, weekly returns are probably the best bet when it comes
to estimating the historical volatility of commodity returns.

Another issue that arises when using the historical estimator has to do with

'Note that T + 1 price observations are needed to generate T rates of return.
2See, for example, French (1980) and Gibbons and Hess (1981).
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how many return observations to use in the computation of the volatility. On one
hand, the more information that is used in the estimation process, the more precise
that estimate becomes. On the other hand, the longer the time period over which
volatility is estimated, the greater the likelihood that the stationarity assumption will
be violated, in which case, formula (11.39) is no longer an unbiased estimate of
the commodity’s rate-of-return variance. In the absence of information indicating
that the stationarity assumption has been violated, twenty-six weeks of return obser-
vations are probably enough to ensure reasonably accurate volatility estimation.

The volatility estimate computed using equation (11.39) computes the vari-
ance of the rate of return for the length of time between the price observations used
to compute the rates of return. Thus, if weekly returns are used, the variance esti-
mate from (11.39) is the variance of the rate of return over a week. To annualize
this value, we have to multiply the variance by the number of weeks in the year,
that is, o, = 5204;,, where the subscripts @ and w denote annual and weekly,
respectively. The transformation for annualizing the weekly standard deviation is
therefore a,, = V/52a,,."

One final issue with respect to historical volatility estimation is worth noting.
The estimators shown above generally use close-to-close price information when
generating the rates of return. This has been accepted as common practice since,
traditionally, the recorded histories of commodity prices are prices reported for the
last transaction of the day. With the advent of sophisticated computer and database
technologies, it has now become easier to record and maintain larger information
sets, with most commodity and option exchanges now recording and maintaining
transaction price files. This more refined information allows more precise estima-
tion of volatility. For example, Parkinson (1980) and Garman and Klass (1980)
develop alternative estimators of variance that use open, high, low, and close com-
modity prices and show that these estimators are eight times “‘better” than the tra-
ditional estimator (11.39).

Implied Volatility Estimation

An alternative volatility estimation procedure arises from the option pricing model
itself. Since all of the parameters of the option pricing model, except o, are known
or can be estimated with little uncertainty, one needs only to equate the observed
market price of the option with its formula value, that is,

V; = V;(o;), (11.41)

“To transform a volatility estimate computed using daily returns to an annual volatility, the daily
estimate is usually multiplied by the square root of the number of trading days in the year (typically,
V/253), rather than the number of calendar days in the year (V365). The motivation for this adjustment
is that studies of daily stock returns indicate that the volatility of return from Friday close to Monday
close (three days) is about the same as the volatility from close-to-close during any other pair of adjacent
trading days (one day). See, for example, Stoll and Whaley (1990a). Thus, treating weekends like a
single trading day provides the most appropriate adjustment for daily stock return volatilities. The empir-
ical evidence regarding weekend volatility in non-stock markets, however, is scant, so the generality of
this result to other commodities is not known. For non-stock markets, a safer procedure may be to use
weekly returns, as was noted earlier in this section.
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where V is the observed price of the option, V is the model price of the option. and
solve for o. An analytical expression for the variance parameter cannot be derived:
however, accurate approximation is possible through “trial-and-error,” in much the
same manner as one solves for a yield to maturity on a bond.

Volatilities computed in this manner are called “‘implied volatilitics™ or
“implied standard deviations.” They may be interpreted as the market consensus
volatility in the sense that the market price of the option is used to impute the
volatility estimate.

If one considers all of the options written on a given commodity. it would
seem reasonable to believe that they will all yield the same estimate of volatility
on the underlying commodity. This is not the case, however. There are a variety of
reasons to cause the estimates to be different.

Non-Simultaneity of Prices. Estimating the implied volatility using (11.41)
assumes that the option price and the commodity price are observed at the same
instant in time. Frequently, it is the case that the only information that is available
is the option and commodity prices at the times at which they were last traded. It
is unlikely that these trades, one in the option market and one in the commodity
market, occurred at the same instant, and, to the extent that they are not contem-
poraneous, there will be error in the estimate of volatility.

Bid-Ask Prices. Even if the option and commodity price observations used
in (11.41) are simultaneous, there is a problem with what the prices represent. If
markets were perfectly liquid and frictionless, trades would clear at the equilibrium
price of the security. Neither descriptor is true, however. Market makers provide
market liquidity by standing ready to immediately buy or sell securities. Since mar-
ket makers have capital (both investment and human) tied up in their operations.
they demand a rate of return on their capital, which they extract by setting the bid
price of a security below the ask price. When market orders are executed, therefore.
they are at the bid or the ask, depending upon whether the individual entering the
market to trade wanted to sell or buy. Since there is no way of discerning the moti-
vation of the trader who was involved in the last observed transaction, implied
volatility estimates have error when the bid price of the option is matched with the
ask price of the commodity and vice versa.

Model Mis-Specification. Using (11.41) to estimate volatility is also subject
to model mis-specification. The technique assumes that the option pricing model
used for f/j(o;) is correctly specified. If it is not, then there is obviously going to
be error in the estimate of the standard deviation of the rate of return on the com-
modity. Model assumptions that could be violated, for example, are the assumption
of log normality of stock prices or independence of returns.

To mitigate the problems associated with using a single implied volatility esti-
mate to represent the volatility of the underlying commodity, the implied volatilities
for several options on the same commodity are averaged to form an overall esti-
mate. The nature of the averaging schemes vary, so it is best to begin with a general
statement of the average implied volatility, that is,

k13 [X3
F=>_ w.,‘&,,-/z Wi, (11.42)
J=

i=1
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where w, is the weight applied to the jth estimate of volatility and # is the number
of options for which volatility estimates were obtained.

The particular weighting schemes used in the literature have been many and
varied. Schmalensee and Trippi (1978) and Patell and Wolfson (1979), for example,
use an equal weighted average, w;, = l/n, j = 1,..,n. Their motivation for doing
so is that each volatility estimate is equally valuable in the determination of the
overall volatility for the commodity. Latane and Rendleman (1976), on the other
hand, weight according to the partial derivative of the call price with respect to the
standard deviation of the commodity return, that is, dV,/0d,, j = 1,...,n. In doing
so, the standard deviation estimates of options that are theoretically more sensitive
to the value of o are weighted more heavily than those that are not. Chiras and
Manaster (1978) follow a similar logic in using the elasticity of the call price with
respect to standard deviation, 8V,d,/d¢,V,, j = 1,...,n. Unfortunately, their scheme
is seriously flawed. Using elasticity as the basis of the weighting scheme implies
that volatility estimates for out-of-the-money options receive the highest weight.
Out-of-the-money options generally do not produce very accurate volatility esti-
mates because the markets for these options are relatively illiquid (inducing serious
nonsimultaneity problems) and the options themselves have high bid-ask spreads
(inducing bid-ask errors). Finally, Whaley (1982) uses nonlinear regression to esti-
mate one value of o using all of the option pricing information simultaneously, that
is,

V; = Vi(o) +¢;. (11.43)

The properties of the maximum likelihood estimator from (11.43) are, perhaps, the
best understood of the available alternatives.

Regardless of the weighting scheme, however, there appears to be strong
empirical support in favor of an implied volatility measure. Latane and Rendleman
and Chiras and Manaster correlate the historical and implied measures on the actual
standard deviation of return and conclude that the implied estimate is a markedly
superior predictor. The market apparently uses more information than merely an
historical estimate in assessing the commodity’s expected volatility.

11.9 SUMMARY

In this chapter, option pricing equations have been derived in detail for European
options on different types of underlying assets. The chapter begins with an intuitive
discussion of the risk-neutral valuation approach used in deriving option pricing
formulas. Next the price and return distributions assumed for commodities are
described. In section 3, risk-neutral valuation of a European option is carried out
in detail, and variations of the basic valuation equation for different types of under-
lying commodities are shown. Using put-call parity, put valuation equations are
then derived.

The price of an option on a commodity depends on the spot price of the
commodity, the exercise price of the option, the cost of carry of the commodity,
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the riskless rate, the standard deviation of the return of the commodity, and the time
to maturity of the option. In section 5, the effect of changes in each of these vari-
ables on the option price is analyzed.

Section 6 presents the valuation equation for an option that permits its holder
to exchange one risky commodity for another. This option, called an exchange
option, is embedded in many types of futures contracts and was introduced in ear-
lier chapters. Valuing the delivery option embedded in the T-bond futures contract
is used as an illustration.

The factors underlying the value of an American option are the same as those
underlying a European option except that the American option has the additional
benefit of early exercise. Section 7 names two popular approaches for valuing
American options. The methods are described in detail in Chapters 13 and 14.

In practice, the most important variable affecting the price of an option is the
volatility of the underlying commodity. Section 8 explains the two approaches for
estimating volatility—historical volatility and implied volatility.



Proof that E(St) = Spe®T = Spelpta®/DT
where p and 0? are the mean and the variance
of the normally distributed continuously compounded rate of return

Begin by rewriting the expected terminal price as the expected price relative,
E(Sr/So) = T = E(c*), (A1.1)

where % is the normally distributed, continuously compounded rate of return from
0 through T. £ can be reexpressed in terms of u, o, and the unit normally distributed
variable z. Using (11.10),

Sr/Sy = e® = enTHoVTE
Substituting this result into (Al.1),

el — E(euT-f-(r\ﬁ‘i) (A1.2)
= e TE(e”VT?).

The term E(e”~™) in (A1.2) may be simplified as follows:
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Substituting (A1.3) into (A1.2), taking the logarithm of both sides, and then fac-
toring T gives

a=p+o02/2 (A1.4)
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APPROXIMATIONS FOR THE CUMULATIVE NORMAL
DENSITY FUNCTION

The probability that a drawing from a unit normal distribution will produce a value
less than the constant d is

Prob(; <d) = [ e 24z = N{d).

Below are two polynomials that provide reasonably accurate approximations for
the above integral.

Approximation 1
N{d) =1 - age™ " Part + apt® + aat?),

where

ap = 0.3989423 ap = 0.4361830
ay = —(L1201676 ag = 0.9372980

t=1/(1 + 0.33267d)

With this approximation method, the value of d must be greater than or equal to
0. The maximum absolute error of this approximation method is 0.00001.

Approximation 2
N{d)=1- age~d2/2(u1t + agtz + (L;gtB + aqt? + asts),

where

ap = 0.3989423 ay = 0.319381530
t = 1/{1+ 0.2316419d) ay = —0.356563782 ag = 1.781477937
aq = —1.821255978 as = 1.330274429

ff

With this approximation method, the value of d must be greater than or equal to
0. The maximum absolute error of this approximation method is 0.000000075.
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The probability that a drawing from a unit normal distribution will produce a value
less than the constant 4 is

4

0o T

e 2y = N{d).

Range of d:

—-499 <d < -2.50

d

-4.90
-4.80
-4.70
-4.60
-4.50

-4.40
-4.30
-4.20
-4.10
-4.00

-3.90
-3.80
-3.70
-3.60
-3.50

-3.40
-3.30
-3.20
-3.10
-3.00

-2.90
-2.80
-2.70
-2.60
-2.50

-0.00

0.00000
0.00000
0.00000
0.00000
0.00000

0.00001
0.00001
0.00001
0.00002
0.00003

0.00005
0.00007
0.00011
0.00016
0.00023

0.00034
0.00048
0.00069
0.00097
0.00135

0.00187
0.00256
0.00347
0.00466
0.00621

-0.01

0.00000
0.00000
0.00000
0.00000
0.00000

0.00001
0.00001
0.00001
0.00002
0.00003

0.00005
0.00007
0.00010
0.00015
0.00022

0.00032
0.00047
0.00066
0.00094
0.00131

0.00181
0.00248
0.00336
0.00453
0.00604

-0.02

0.00000
0.00000
0.00000
0.00000
0.00000

0.00000
0.00001
0.00001
0.00002
0.00003

0.00004
0.00007
0.00010
0.00015
0.00022

0.00031
0.00045
0.00064
(0.00090
0.00126

0.00175
0.00240
0.00326
0.00440
0.00587

-0.03

0.00000
0.00000
0.00000
0.00000
0.00000

0.00000
0.00001
0.00001
0.00002
0.00003

0.00004
0.00006
0.00010
0.00014
0.00021

0.00030
0.00043
(.00062
0.00087
0.00122

0.00169
0.00233
0.00317
0.00427
0.00570

-0.04

0.00000
0.00000
0.00000
0.00000
0.00000

0.00000
0.00001
0.00001
0.00002
0.00003

0.00004
0.00006
0.00009
0.00014
0.00020

0.00029
0.00042
0.00060
0.00084
0.00118

0.00164
0.00226
0.00307
0.00415
(0.00554

-0.05

0.00000
0.00000
(.00000
0.00000
(.00000

0.00000
0.00001
0.00001
0.00002
0.00003

0.00004
0.00006
0.00009
0.00013
0.00019

0.00028
0.00040
0.00058
0.00082
0.00114

0.00159
0.00219
0.00298
0.00402
0.00539

-0.06

0.00000
0.00000
0.00000
0.00000
0.00000

0.00000
0.00001
0.00001
0.00002
0.00002

0.00004
0.00006
0.00008
0.00013
0.00019

0.00027
0.00039
0.00056
0.00079
0.00111

0.00154
0.00212
0.00289
0.00391
0.00523

-0.07

0.00000
0.00000
0.00000
0.00000
0.60000

0.00000
0.00001
0.00001
0.00002
0.00002

0.00004
0.00005
0.00008
0.00012
0.00018

0.00026
0.00038
0.00054
0.00076
0.00107

0.00149
0.00205
0.00280
0.0037%
0.00508

-0.08

0.00000
0.00000
0.00000
(.00000
0.00000

0.00000
0.00001
0.00001
0.00001
0.00002

0.00003
0.00005
0.00008
0.00012
0.00017

0.00025
0.00036
0.00052
0.00074
0.00104

0.00144
0.00199
1.00272
0.00368
0.00494

-0.09

0.00000
0.00000
0.00000

- 0.00000

0.00000

0.00000
0.00001
0.00001
0.00001
0.00002

0.0006G3
0.00005
0.00008
0.00011
0.00017

0.00024
0.00035
0.00050
0.00071
0.00100

0.00139
0.00193
0.002641
0.00357
0.00480
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CUMULATIVE NORMAL PROBABILITY TABLES

The probability that a drawing from a unit normal distribution will produce a value
less than the constant d is

o 2
Prob(? < d) = / L, - N(d).

—
J—co V27

Range of ¢ —2.49<d<0.00

d -0.00 -0.01 -0.02 -0.03 -0.04 -0.05 -0.06 -0.07 -0.08 -0.09

240 0.00820 0.00798 0.00776 0.00755 0.00734 0.00714 0.00695 0.00676 0.00657 0.00639
230 0.01072 0.01044 0.01017 0.00990 0.00964 0.00939 0.00914 0.00889 0.00866 0.00842
220 0.01390 0.01355 0.01321 0.01287 0.01255 0.01222 0.01191 0.01160 0.01130 0.01101
210 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01426
2200 0.02275 0.02222 0.02169 0.02118 0.02068 0.02018 0.01970 0.01923 0.01876 0.01831

S1.90 0.02872 0.02807 0.02743 0.02680 0.02619 0.02559 0.02500 0.02442 0.02385 (.02330
J1.80 0.03593 0.03515 0.03438 0.03362 0.03288 0.03216 0.03144 0.03074 0.03005 0.02938
170 0.04457 0.04363 0.04272 0.04182 0.04093 0.04006 0.03920 0.03836 0.03754 0.03673
J1.60 0.05480 0.05370 0.05262 0.05155 0.05050 0.04947 0.04846 0.04746 0.04648 0.04551
S1.50  0.06681 0.06552 0.06426 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592

_1.40 0.08076 0.07927 0.07780 0.07636 0.07493 0.07353 0.07215 0.07078 0.06944 0.06811
21.30  0.09680 0.09510 0.09342 0.09176 0.09012 0.08851 0.08691 0.08534 0.08379 0.08226
2120 0.11507 0.11314 0.11123 0.10935 0.10749 0.10565 0.10383 0.10204 0.10027 0.09853
J1.10 0.13567 0.13350 0.13136 0.12924 0.12714 0.12507 0.12302 0.12100 0.11900 0.11702
_1.00 0.15866 0.15625 0.15386 0.15150 0.14917 0.14686 0.14457 0.14231 0.14007 0.13786

J0.90 0.18406 0.18141 0.17879 0.17619 0.17361 0.17106 0.16853 0.16602 0.16354 0.16109
J0.80 0.21186 0.20897 0.20611 0.20327 0.20045 0.19766 0.19489 0.19215 0.18943 0.18673
070 0.24196 0.23885 0.23576 0.23270 0.22965 0.22663 0.22363 0.22065 0.21770 0.21476
L0.60 0.27425 0.27093 0.26763 0.26435 0.26109 0.25785 0.25463 0.25143 0.24825 0.24510
J0.50 0.30854 0.30503 0.30153 0.29806 0.29460 0.29116 0.28774 0.28434 0.28096 0.27760

L0.40 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 0.32276 0.31918 0.31561 0.31207
2030 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.35942 0.35569 0.35197 0.34827
J0.20 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.39743 0.39358 0.38974 0.38591
J0.10 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.43644 0.43251 0.42858 0.42465
0.00  0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.47608 0.47210 0.46812 0.46414
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CUMULATIVE NORMAL PROBABILITY TABLES
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The probability that a drawing from a unit normal distribution will produce a value
less than the constant d is

Prob{z < d) = / s

J —o0 \Eﬂ'

o 1

Range of d:

0.00<d <249

d

0.00
0.10
0.20
0.30
0.40

0.50
0.60
0.70
0.80
0.90

1.00
1.10
1.20
1.30
1.40

1.50
1.60
1.70
1.80
1.90

2.00
2.10
2.20
2.30
2.40

0.00

0.50000
0.53983
0.57926
0.61791
0.65542

0.69146
0.72575
0.75804
0.78814
0.81594

0.84134
0.86433
0.88493
0.90320
0.91924

0.93319
0.94520
0.95543
0.96407
0.97128

0.97725
0.98214
0.98610
0.98928
(0.99180

0.01

0.50399
0.54380
0.58317
0.62172
0.65910

0.69497
0.72907
0.76115
0.79103
0.81859

(0.84375
0.86650
0.88686
0.90490
0.92073

0.93448
0.94630
0.95637
0.96485
0.97193

0.97778
0.98257
0.98645
0.98956
0.99202

0.02

0.50798
0.54776
1.58700
0.62552
0.66276

0.69847
0.73237
0.76424
0.79389
0.82121

0.84614
0.86864
0.88877
0.90658
0.92220

0.93574
0.94738
0.95728
0.96562
0.97257

0.97831
0.98300
0.98679
0.98983
0.99224

0.03

0.51197
0.55172
0.59095
0.62930
0.66640

0.70194
0.73565
0.76730
0.79673
0.82381

0.84850
0.87076
0.89065
0.90824
0.92364

0.93699
(.94845
(.95818
0.96637
0.97320

0.97882
0.98341
0.98713
0.99010
0.99245

0.04

0.51595
0.55567
(LOUI8YS
0.63307
0.67003

0.70540
0.73891
0.77035
0.79955
0.82639

0.85083
0.87286
0.89251
.90988
0.92507

0.93822
0.94950
0.95907
0.96712
0.97381

0.97932
0.98382
0.98745
0.99036
0.99266

0.05

0.51994
0.75962
(.H0871
0.63683
0.67364

0.70884
0.74215
0.77337
0.80234
(.82894

(0.85314
0.87493
0.89435
0.91149
0.92647

0.93943
0.95053
0.95994
0.96784
0.97441

0.97982
0.98422
0.98778
0.99061
0.99286

(.06

0.52392
0.56356
0.60207
0.64058
0.67724

0.71226
0.74537
0.77637
(0.80511
0.83147

0.85543
0.87698
0.89617
0.91309
0.92785

0.94062
0.95154
0.96080
0.96856
0.97500

.98030
0.98461
(.98809
0.99086
0.99305

0.07

0.52790
006749
606 12
0.64431
0.68082

0.71566
0.74857
0.77935
0.80785
0.83398

0.85769
0.87900
0.89796
0.91466
0.92922

0.94179
0.95254
0.96164
0.96926
0.97558

0.98077
0.98500
(.98840
0.99111
0.99324

(.08

1.53138
0.57142
(O 12
0.64803
.68439

0.71904
0.75175
0.78230
0.810567
0.83646

(.85993
0.88100
0.89973
0.91621
0.93056

0.94295
0.95352
0.96246
0.96995
0.97615

0.98124
0.98537
0.98870
0.99134
0.99343

(.09

(1.53586
0570335
0Lkl
0.65173
0.68793

0.72240
0.75490
0.78524
0.81327
0.83891

0.86214
0.88298
0.90147
0.91774
0.93189

0.944908
0.95449
(3.96327
0.97062
0.97670

0.98169
0.98574
0.98899
0.99158
0.99361
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The probability that a drawing from a unit normal distribution will produce a value
less than the constant d is

d

oo T

Prob(z < d) = / ~\—ﬁ—:-e_z2/2dz = N{d).

2.50
2.60
2.70
2.80
2.90

3.00
3.10
3.20
3.30
3.40

3.50
3.60
3.70
3.80
3.90

4.00
4.10
4.20
4.30
4.40

4.50
4.60
4.70
4.80
4.90

0.00

0.99379
0.99534
0.99653
0.99744
0.99813

0.99865
0.99903
0.99931
0.99952
0.99966

0.99977
0.99984
0.99989
0.99993
0.99995

0.99997
0.99998
0.99999
0.99999
0.99999

1.00000
1.00000
1.00000
1.00000
1.00000

0.01

0.99396
(0.99547
0.99664
0.99752
0.99819

0.99869
0.99906
0.99934
0.99953
0.99968

0.99978
0.99985
0.99990
0.99993
0.99995

0.99997
0.99998
0.99999
0.99999
0.99999

1.00000
1.00000
1.00000
1.00000
1.00000

0.02

0.99413
0.99560
0.99674
0.99760
0.99825

0.99874
0.99910
0.99936
0.99955
0.99969

0.99978
0.99985
0.99990
0.99993
0.99996

0.99997
0.99998
0.99999
0.99999
1.00000

1.00000
1.00000
1.00000
1.00000
1.00000

0.03

0.99430
0.99573
0.99683
0.99767
0.99831

0.99878
0.99913
0.99938
0.99957
0.99970

0.99979
1.99986
0.99990
0.99994
0.99996

0.99997
0.99998
0.99999
(0.99999
1.00000

1.00000
1.00000
1.00000
1.00000
1.00000

0.04

0.99446
0.99585
(0.99693
0.99774
0.99836

0.99882
0.99916
0.99940
0.99958
0.99971

0.99980
0.99986
0.99991
0.99994
0.99996

0.99997
0.99998
0.99999
0.99999
1.00000

1.00000
1.00000
1.00000
1.00000
1.00000

0.05

0.99461
0.99598
(.99702
0.99781
0.99841

0.99886
0.99918
0.99942
0.99960
0.99972

(0.99981
0.99987
0.99991
0.99994
0.99996

0.99997
0.99998
0.99999
0.99999
1.00000

1.00000
1.00000
1.00000
1.00000
1.00000

0.06

0.99477
(.99609
0.99711
0.99788
0.99846

0.99889
0.99921
0.99944
0.99961
0.99973

0.99981
0.99987
0.99992
0.99994
0.99996

0.99998
0.99998
0.99999
0.99999
1.00000

1.00000
1.00000
1.00000
1.00000
1.00000

0.07

(.99492
0.99621
0.99720
0.99795
0.99851

0.99893
0.99924
0.99946
0.99962
0.99974

0.99982
0.99988
0.99992
0.99995
0.99996

0.99998
0.99998
0.99999
0.99999
1.00000

1.00000
1.00000
1.00000
1.00000
1.00000

(.08

(.99506
0.99632
0.99728
0.99801
0.99856

0.99897
0.99926
0.99948
0.99964
0.99975

0.99983
0.99988
(.99992
(0.99995
0.99997

0.99998
0.99999
(.99999
0.99999
1.00000

1.00000
1.00000
1.00000
1.00000
1.00000

0.09

0.99520
0.99643
0.99736
0.99807
(0.99561

0.99900
0.99929
0.99950
0.99965
0.99976

0.99983
0.99989
0.99992
0.99995
0.99997

0.99993
0.99999
0.99999
0.99999
1.00000

1.00000
1.00000
1.00000
1.00000
1.00000




PARTIAL DERIVATIVES OF EUROPEAN COMMODITY OPTION
VALUATION EQUATIONS

The valuation equations for the European call and put options are
(S, T; X) = Se®ITN(d)) — Xe 7T N(dz) (A4.1)

and

p(S,T; X) = Xe "TN(=dz) — Sel* ' N(=d), (A4.2)

respectively, where

_In(§/X)+(b+ 502)T

dy and do =dy — aVT.

oVT
dy =dy — oVT (A4.3)
d2 = d? - 2d10VT + o*T (A4.4)

d3 = d? - 2[In(S/X) + bT + 50*T] + o*T

= d? — 2In(Se*T/X) (A4.5)
nldy) - o o (A4.6)
1 2 T
n(dg) — e—d1/2+21n(Se /X)
V2r
— —d? In(Se*T/X)
\/‘2_1.7.6 &4
= n(dl)Se"T/X (A4.7)
n{d;) = n(dg)X/Se*’T {A4.8)
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de _ _pON(dy) _pON(dy)
Ao = = = (b—m)T b-ryTivit1) e rr UiVid2)
55 e N(d1)+56 53 Xe 35
L ber _ 7 ON(dy) 8d, . ON(dy) 8d
=T N(g Selo-n T FL e 2T AR2) B2
¢ (dy) + Se od, 08 ¢ Tady 8§
= e ITN(dy) + Se(”‘r)Tn(dl)%% - Xe_’"Tn(dg)%%g
= eO-ITN(dy) + Se=Tn(d, )% - Xe“'"Tn(dl)SebT/X%
=e®ITN(d;) >0 (A4.9a)
_ O _ o 7ON(=d2)  myr gy g -rTIN(=d1)
AP—BS—Xe 55 € N(~d;) — Se 55
= T N(~d;) - Xe—’"Tn(—dl)SebT/X%% + Se(b“r)Tn(—dl)%'
= —el""ITN(~dy) <0 (A4.9b)
, S s
e = 56%% =8, = PITN@) > 1 (A4.10a)
G, S - S
= 8__51’;2 = 8,7 = —eTN(=d)Z < -1 (A4.10b)
(b—7)T (b—r)T
e = %ﬁ;c _ Oe aSN(ﬂh) _ e{b_")Tn(dl)%l - Lg‘\/ﬁ%d_l) >0 (Ad4.11a)
a
_ {(b—r)T . i(b—w')T d
yp = aaip _ Jde BSN( dy) — € SO\}?’TE 1) =5 >0 (A4.11b)
dc —T 2
5% = N(d2) <0 (A4.12a)
O _ (A4.12b)
5% = ¢ " N(=d2) >0 ,
g_g = TS PT N () + Se(b—rw___a’\g (bdl) - Xe‘TT~—~——aA:9(bd2) (A4.13a)
=TSe®* T N(d;) > 0
% = Xe—’”Ta___Ng;dl) — TSe® T N(—dy) — Se(b—r)TaMN._—(a;dl) {A4.13b)

=-T8e"TN(—d;) <0
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Jdc
oc _ TS N(dy) - TSe®ITN(dy) + Se(b—r)TM
or ar
+TXe " "N(dy) — Xe ™ —-ahgd”
-
=TXe "TN(dy) >0 (A4.14a)

T aN( -‘(12 )
or

—TSeCIT N (—dy) + TSe®TN(—dy) — Sete-nr IV ) é‘d‘)
T

=-TXe "TN(-dp) <0 {A4.14b)

o = ~TXe "TN(=dy) + Xe ™

T "’_N (d1) _ yo-rr ON(d2)

de
V € = - = (b— T)
e8ac Jdo Se do

— Xe

— Se(b——r}Tn(d )Qﬂ — Xe —rT (d2)6d2

0
Sb’i")T (d)_iil_X*TT( ) rT/X

= Se b—r)Tn(d ) [?ﬁ’l — %]
do

ads
do

do
= Se~"Tn(d))WVT > 0 (A4.15a)

Vega, = O _ xo-rmONCD)  guonrONC)

do i o do
dd. . od
—rT 2 g b—m)T _ 1

= Xe " n{—dy) [ e ] Se n{—di) [ ~—]

dd;  od
— Ge®—TT 1 a2
€ n{d) [ 90 ~ B0

= Se* " Tn(d )WT > 0 {A4.15b)

ody _0dy _ [ In(SeT/X) ¢ In(Se”/X) _ ¢
4 O[O/ s sy - |- | = VT

= % =(b— r)S’e(b“")TN(dl)Se(”‘r)T81\;(;1)
. _.pON(d
+7Xe "TN(dy) — Xe T—é%;z—)
ad, od . :
= Se®~"Tn(d;) [5—7—3 - a—;] + (b~ 1)Se®"TN(dy) +rXe T N(dz)
= Se(b“r)Tn(dl)g\J/T + (b—1)Se®"ITN(dy) +7Xe " TN(dz) <> 0 (A4.16a)
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_ o _ —rT — ON(=d2)
(—)p—a——T-— rXe TP N(—d2) + Xe 5T
(b= r)Set=TN(~dy) - gele-nT IN(=d1)
aT
d
~ —rXe "TN(~dp) — (b—r)Se® " "TN(-d1) + Se="7Tn(d;) [%% - %‘é%}
- Se(b“r)Tn(d1)2j,T — (b= r)Se® T N(—dy) —7Xe "TN(=d) <20 (A4.16b)
ddy  Ody _ [_ln(S/X) b L }_ {_ln(S/X) + b ¢ ] _ 7
8T ~ T | 20T3% " 20VT 4AVT 2017372 " 20T 4T 2T




