B

Common stock option contracts have been traded in the U.S. for many decades.
Trading began in the over-the-counter market more than fifty years ago. In April
1973, the Chicago Board Options Exchange (CBOE) became the first organized
secondary market in call options on sixteen NYSE common stocks. In 1977, the
CBOE introduced put options on stocks. Today, both call and put options are traded
on over five hundred different stocks and on five exchanges. In addition to the
CBOE, active secondary stock option markets exist on the American Stock
Exchange, the Pacific Coast Exchange, the Philadelphia Stock Exchange, and the
New York Stock Exchange.

This chapter focuses on stock options. In the first section, the stock option
market is described. In the second section, we adapt the arbitrage pricing relations
of Chapter 10 to stock option contracts. The principles are modified somewhat to
account for the fact that common stocks typically pay discrete dividends during the
option’s life. In section 3, we value European and American call options on divi-
dend-paying stocks. Even though an American call option may be exercised early,
a valuation equation for this option exists. For American put options on stocks, no
valuation equation exists: In section 4, the binomial method is used to approximate
the value of American put options on dividend-paying stocks. Although the appli-
cation is specific, the binomial method can be applied to the valuation of virtually
any type of option. This method is used again in Chapter 15, for example, to value
interest rate options. Finally, in section 5, warrants used to raise new capital are
studied. Warrants are like options except that they are issued by a company. If the
warrants are exercised, the company’s equity may be diluted, something that must
be incorporated into warrant valuation.
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13.1 COMMON STOCK OPTION MARKETS

In the U.S., stock option contracts are written in denominations of one hundred
shares, expire on the Saturday after the third Friday of the contract month, and are
American-style. A call option on a stock represents the right to buy one hundred
shares of the underlying stock, and a put option represents the right to sell one
hundred shares. Although the contract denomination is one hundred shares, the
option prices are quoted on a per-share basis. The exercise prices of stock options
are in $5 increments above $25 and in $2.50 increments below.

To illustrate these conventions, consider the option prices reported in Table
13.1. The IBM call option with an exercise price of 100 and a January maturity
has a price of $3.625. To buy this contract, it would cost $3.625 X 100 = $362.50.
The implied terms of this contract are that the buyer has the right to buy one hun-
dred shares of IBM for a total amount of $10,000 at any time between November
13, 1991, and January 17, 1992 (i.e., the third Friday of January).'

In reporting stock option prices, a number of conventions are used. In Table
13.1, a number of cells of the table have the entry “r.”’ This means that the par-
ticular option did not trade on that day. Other cells have the entry *'s,”” implying
that the particular option contract does not exist. Also, beneath the firm’s ticker
symbol, the closing stock price is reported. This is done for convenience, so the
reader does have to turn to the stock market page to find the closing price of the
underlying stock.

One final note about Table 13.1 is that the most actively traded stock options
on the various exchanges are listed. These are simply the option contracts with the
greatest number of transactions on that day. Interspersed among the stock options
are usually some stock index options, the subject of the next chapter. In the CBOE
active option list, for example, nine of the ten most active options are written on
the S&P 100 index.

13.2 PRICE BOUNDS AND ARBITRAGE RELATIONS

The lower price bounds and the put-call parity relations for stock options are pre-
sented for non-dividend- and dividend-paying stocks. Without dividends, the arbi-
trage relations are straightforward since a common stock is a commodity for which
the cost-of-carry-rate, b, equals the riskless rate of interest, ». With dividends, the
relations are modified slightly to account for the fact that the underlying stock drops
in price at the ex-dividend instant, while the exercise price does not.> As a result,
an anticipated cash dividend generally reduces the value of calls and increases the
value of puts.

'For practical purposes, assuming the option expires Friday seems prudent since both the stock
market and the option market are closed on Saturday.

The exercise price is, however, adjusted for stock splits and stock dividends. Where the stock
split/dividend produces a fractional result, the exercise price is rounded to the nearest eighth.
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Non-Dividend-Paying Stocks
To derive the lower price bounds and the put-call parity relations for options on
non-dividend-paying stocks, simply set the cost-of-carry rate, b, equal to the risk-
less rate of interest, r, in the relations presented in Chapter 10. The only cost of
carrying the stock is interest.

The lower price bounds for the European call and put options are

c(S8, T, X) > max[0,S — Xe T (13.1a)

and
p(S,T; X) > max|0, Xe T - 9], (13.1b)
respectively, and the lower price bounds for the American call and put options are
C(S,T; X) > max[0,S — Xe™ 7] (13.2a)

and
P(S,T; X) > max[0, X — S, (13.2b)

respectively. The put-call parity relation for non-dividend-paying European stock
options’ is

(S, T; X) —p(S,T;X)=5— Xe T, {13.3a)

and the put-call parity relation for American options on non-dividend-paying stocks
is

S—X<C(ST;X)—P(S,T; X)< S — Xe™ ™", (13.3b)

For non-dividend-paying stock options, the American call option will not rationally
be exercised early, while the American put option may be.*

Dividend-Paying Stocks

If dividends are paid during the option’s life, the above relations must reflect the
stock’s drop in value when the dividends are paid. To manage this modification,
we assume that the underlying stock pays a single dividend during the option’s life

3The original formulation of put-call parity for European stock options is contained in Stoll (1969).
*For proofs of any of the relations (13.1a) through (13.3b), see Chapter 10.
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at a time that is known with certainty. The dividend amount is D and the time to
ex-dividend is ¢’

If the amount and the timing of the dividend payment is known, the lower
price bound for the European call option on a stock is

(S, T; X) > max[0,S — De™" — Xe™ 7. (13.4a)

In this relation, the current stock price is reduced by the present value of the prom-
ised dividend. Because a European-style option cannot be exercised before maturity,
the call option holder has no opportunity to exercise the option while the stock is
selling cum dividend. In other words, to the call option holder, the current value
of the underlying stock is its observed market price less the amount that the prom-
ised dividend contributes to the current stock value, that is, S — De™". To prove
this pricing relation, we use the same arbitrage transactions as in Chapter 10, except
we use the reduced stock price S — De™ " in place of S.
The lower price bound for the European put option on a stock is

p(S,T; X) > max|[0, Xe ™" — S 4 De™ ™). {13.4b)

Again, the stock price is reduced by the present value of the promised dividend.
Unlike the call option case, however, this serves to increase the lower price bound
of the European put option. Because the put option is the right to sell the underlying
stock at a fixed price, a discrete drop in the stock price such as that induced by the
payment of a dividend serves to increase the value of the option. An arbitrage proof
of this relation is straightforward when the stock price, net of the present value of
the dividend is used in place of the commodity price.

The lower price bounds for American stock options are slightly more com-
plex. In the case of the American call option, for example, it may be optimal to
exercise just prior to the dividend payment because the stock price falls by an
amount D when the dividend is paid. The lower price bound of an American call
option expiring at the ex-dividend instant would be 0 or § — Xe™ ", whichever is
greater. On the other hand, it may be optimal to wait until the call option’s expi-
ration to exercise. The lower price bound for a call option expiring normally is
(13.4a).° Combining the two results, we get

C(S,T; X) > max[0, 5 — Xe™™,§ — De™"" — Xe™ 7). (13.5a)

5Generalizations of the results to cases where there are more than one known dividend are derived
in the same manner as the single dividend results shown here.

®Recall that in Chapter 10 we showed that an American call is never optimally exercised early if
b = r. Between dividends, the cost-of-carry rate is r, so exercise is not optimal. At the ex-dividend
instant, however, the call option holder may wish to exercise to capture the dividend.
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The last two terms on the right-hand side of (13.5a) provide important guid-
ance in deciding whether to exercise the American call option early, just prior to
the ex-dividend instant. The second term in the squared brackets is the present value
of the early exercise proceeds of the call. If the amount is less than the lower price
bound of the call that expires normally, that is, if

S_Xe < S—De "t —Xe T, (13.6)

the American call option will not be exercised just prior to the ex-dividend instant.
To see why, simply rewrite (13.6) so it reads

D< X[l —e T8, (13.7)

In other words, the American call will not be exercised early if the dividend cap-
tured by exercising prior to the ex-dividend date is less than the interest implicitly
earned by deferring exercise until expiration.

Figure 13.1 depicts a case in which early exercise could occur at the ex-
dividend instant, ¢. Just prior to ex-dividend, the call option may be exercised yield-
ing proceeds S, + D — X, where S, is the ex-dividend stock price. An instant later,
the option is left unexercised with value ¢(S,, T — ¢; X), where c() is the European
call option formula. Thus, if the ex-dividend stock price, S,, is above the critical
ex-dividend stock price where the two functions intersect, S, the option holder will
choose to exercise her option early just prior to the ex-dividend instant. On the
other hand, if S, =< S;, the option holder will choose to leave her position open
until the option’s expiration.

FIGURE 13.1 American call option price as a function of the ex-divi-
dend stock price immediately prior to the ex-dividend
instant. Early exercise may be optimal.
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FIGURE 13.2 American call option price as a function of the ex-divi-
dend stock price immediately prior to the ex-dividend
instant. Early exercise will not be optimal.
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Figure 13.2 depicts a case in which early exercise will not occur at the ex-
dividend instant, ¢. Early exercise will not occur if the functions, §, + D — X and
¢(S,,T — t; X) do not intersect, as is depicted in Figure 13.2. In this case, the lower
boundary condition of the European call, S, — Xe "7, lies above the early exer-
cise proceeds, S, + D — X, and hence the call option will not be exercised early.
Stated explicitly, early exercise is not rational if

S;+D—-X <8 —Xe T8,

This condition for no early exercise is the same as (13.6), where S, is the ex-div-
idend stock price and where the investor is standing at the ex-dividend instant, 7.
The condition can also be written as

D < X[1 —e 7T, (13.7)

In words, if the ex-dividend stock price decline—the dividend—is less than the
present value of the interest income that would be earned by deferring exercise until
expiration, early exercise will not occur. When condition (13.7) is met, the value
of the American call is simply the value of the corresponding European call.

The lower price bound of an American put option is somewhat different. In
the absence of a dividend, an American put may be exercised early. In the presence
of a dividend payment, however, there is a period just prior to the ex-dividend date
when early exercise is suboptimal. In that period, the interest earned on the exercise
proceeds of the option is less than the drop in the stock price from the payment of
the dividend. If ¢, represents a time prior to the dividend payment at time ¢, early
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exercise is suboptimal, where (X — S)e’“ ™" is less than (X — § + D). Rearranging,
early exercise will not occur between ¢, and ¢ if 7

In(1 + 2=
tn >t—~—(~—7_5~13—). (13.8)

Early exercise will become a possibility again immediately after the dividend is
paid. Overall, the lower price bound of the American put option is

P(S,T;X) > max[0,X — (S — De™™)). (13.5b)

Put-call parity for European options on dividend-paying stocks also reflects
the fact that the current stock price is deflated by the present value of the promised
dividend, that is,

(S, T;X) —p(S,T; X) =S — De™ ™ — Xe 7. (13.9)

That the presence of the dividend reduces the value of the call and increases the
value of the put is again reflected here by the fact that the term on the right-hand
side of (13.9) is smaller than it would be if the stock paid no dividend.

Put-call parity for American options on dividend-paying stocks is represented
by a pair of inequalities, that is,

S—De ™ — X <C(S,T; X)—P(S,T; X) < S—De ™ — Xe™™. (13.10)

To prove the put-call parity relation (13.10), we consider each inequality in turn.
The left-hand side condition of (13.10) can be derived by considering the values
of a portfolio that consists of buying a call, selling a put, selling the stock, and
lending X + De™" risklessly. Table 13.2 contains these portfolio values.

In Table 13.2, it can be seen that, if all of the security positions stay open
until expiration, the terminal value of the portfolio will be positive, independent of
whether the terminal stock price is above or below the exercise price of the options.
If the terminal stock price is above the exercise price, the call option is exercised,
and the stock acquired at exercise price X is used to deliver, in part, against the
short stock position. If the terminal stock price is below the exercise price, the put

"It is possible that the dividend payment is so large that early exercise prior to the dividend payment
is completely precluded. For example, consider the case where X = 50,8 =40,D = 1,¢ = .25 and
r = .10. Early exercise is precluded if 7, = .25 — in[l - 1450 — 40))/.10 = —.7031. Because the
value is negative, the implication is that there is no time during the current dividend period (i.e., from
0 to £) where it will not pay the American put option holder to wait until the dividend is paid to exercise

his option.
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TABLE 13.2 Arbitrage transactions for establishing put-call parity for American stock
options. § — De™ "™ — X < C(S,T;X) — P(5,T; X)

Ex-Dividend Put Exercised

Put Exercised

Lend De™ "t

Day (%) Early (1) Normally (T)
Initial Intermediate ~ Terminal Value
Position Value Value Sr< X Sr>X
Buy American Call - C. : 0 Sp— X
Sell American Put P —(X = 57) —(X — 57) 0
Sell Stock S -D -5, ~Sr -8
—De™ Tt D
-X Xe™™ Xe'T Xe'T
Net Portfolio Value  —C+ P 0 C,+ X 1) X(eT —1)
+8 — De™" X(e™ — 1)
-X

is exercised. The stock received in the exercise of the put is used to cover the short
stock position established at the outset. In the event the put is exercised early at
time 7, the investment in the riskless bonds is more than sufficient to cover the
payment of the exercise price to the put option holder, and the stock received from
the exercise of the put is used to cover the stock sold when the portfolio was
formed. In addition, an open call option position that may still have value remains.
In other words, by forming the portfolio of securities in the proportions noted
above, we have formed a portfolio that will never have a negative future value. If
the future value is certain to be nonnegative, the initial value must be nonpositive,
or the left-hand inequality of (13.10) holds.

The right-hand side of (13.10) may be derived by considering the portfolio
used to prove European put-call parity. Table 13.3 contains the arbitrage portfolio
transactions. In this case, the terminal value of the portfolio is certain to equal zero,
should the option positions stay open until that time. In the event the American
call option holder decides to exercise the call option early, the portfolio holder uses
his long stock position to cover his stock obligation on the exercised call and uses
the exercise proceeds to retire his outstanding debt. After these actions are taken,
the portfolio holder still has an open long put position and cash in the amount of
X[l — e """ "). Since the portfolio is certain to have nonnegative outcomes, the
initial value must be nonpositive or the right-hand inequality of (13.10) must hold.

13.3 VALUATION OF CALL OPTIONS ON STOCKS

European Call Option on Non-Dividend-Paying Stocks
A non-dividend-paying stock has a cost-of-carry rate, b, equal to the riskless rate
of interest, r, so, using equation (11.25) from Chapter 11, the valuation equation
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TABLE 13.3 Arbitrage transactions for establishing put-call parity for American stock

options. C(S,T;X)— P(5,T; X) < S —De™" — Xe T

Ex-Dividend Call Exercised Call Exercised
Day (t) Early (7) Normally (T)
Initial Intermediate . Terminal Value
Position Ex-Dividend Value Value Sr< X
Sell American Call C "‘(5'1— X) 0 —(S7 - X)
Buy American Put -P 1} A - St ]
Buy Stock -8 D S, S+
Borrow De™ ™ De™ Tt -D
Borrow Xe™ T Xe T —Xe m{T-7) —-X
Net Portfolio Value C-P-8 0 P, 0
+Det 4 XerT FX[1 = e-r(T=0)

of a European call option on a non-dividend-paying stock® is
c(S8,T; X) = SN(d,) — Xe "I N(dy), (13.11)
where

_ In(S8/X) + (r + .50%)T
= e

dy . and dp =di — oVT.

European Call Option on Dividend-Paying Stocks
In the presence of a known discrete dividend, option valuation remains relatively
straightforward. In place of assuming that future stock prices are lognormally dis-
tributed, we now assume that stock prices, net of the present value of the escrowed
dividend, are lognormally distributed. The dividend to be paid during the option’s
life is a known amount on a known date. At the ex-dividend instant, the stock price
drops by the amount of the dividend. The stock price net of the present value of
the dividend, however, remains unchanged.

Under this modified assumption, the valuation equations for European
options maintain the same structure as in Chapter 11. The only change is that the
current stock price net of the present value of the promised dividend,

ST =S — De™ ", (13.12)

®This equation is often referred to as simply the Black-Scholes formula, given the important impact
that the Black—Scholes (1973) paper has had on the theory of option pricing and, more generally, the
practice of finance.
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is substituted for the stock price parameter in the European call option pricing for-
mula (13.11). The valuation equation of a European call option on a dividend-
paying stock is

e(S,T; X) = S*N(d,) — Xe "I N(dy), {13.13)

where

_ In(S%/X) + (r +.50%)T
= T ?

Naturally, the value of the call decreases as a result of the cash disbursement on
the stock.

dl and dg = dl - O’ﬁ.

American Call Option on Non-Dividend-Paying Stocks

In Chapter 11, we showed that if the cost-of-carry rate of the underlying commodity
is greater than or equal to the riskless rate of interest (i.e., b = r), the American
call option on the commodity will never be optimally exercised early and its value
equals the value of a European call option. In the case of a non-dividend-paying
stock, the cost-of-carry rate equals the riskless rate of interest. Hence, the valuation
equation of a American call option on a non-dividend-paying stock is (13.11).

American Call Option on Dividend-Paying Stocks

When a stock pays a dividend, the problem of valuing an American call is more
complex. Whereas an American call option on a non-dividend-paying stock will
never optimally be exercised prior to expiration, an American call option on a div-
idend-paying stock may be. This situation arises because the stock price falls at the
ex-dividend instant, which causes the call to drop in value. It may be optimal for
the American call option holder to exercise his option just prior to this ex-dividend
stock price drop.

The easiest way to derive the valuation equation for the American call option
on a dividend-paying stock is to use the risk-neutral option valuation. Consider the
American call option holder’s dilemma as depicted in Figure 13.1. At time ¢, the
American option holder will exercise his option if §, > S and will leave his position
open if §, = S. And, if he leaves his position open at ¢, his option will have ter-
minal values §;, — X if S; > X and 0 if S; = X. Recognizing that the option’s
payoffs will occur at one of two points in time (i.e., just prior to the early exercise
instant or at expiration) allows us to write the current value of the call as the present
value of the expected future payoffs, that is,

C(S, T, X) = e‘”E(CHSt > S:) + C_T'TE(C’TJSt S S:)
=e "E(S, + D - X|S, > S})
+e "TE(Sp — X|S; < S and St > X)
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= e " [E(S5,]S; > 8}) — (X — D)Prob(S, > S;)]
+ e "T[E(Sr|S, < Sf and St > X)
— XProb(S; < 8} and St > X)). (13.14)

Assuming that the future stock price net of the present value of the promised
dividend is lognormally distributed, the expected values on the right-hand side of
(13.14) become the valuation equation of an American call option on a dividend-

paying stock:
C(8,T; X) = e " [S%e™ N1(by) — (X — D)Ny(b2)]

+ 6~TT[S$6TTN2 (al, -—blg - t/T)
— X Na(ag, —ba; —/t/T)] (13.15a)

= S*[N1(b1) + Na(a1, —b1; —/t/T)]
— Xe-rT[Nl(bz)er(T_t) + Nz(az, —-bg; —/ t/T)]

+ De "' Ny (b2), (13.15b)
where
1 z /X 502
- n(S*/ )U+\/(;+ 50 )T’ a5 = a1 — oVT.
1 T * . 2
b1=n(S /S;) + (r + .50%)t by = by — oV,

oVt ’

N,(b) is the cumulative univariate normal density function with upper integral limit
b° and N,(a, b; p) is the cumulative bivariate normal density function with upper
integral limits, a and b, and correlation coefficient, p.'° S is the ex-dividend stock

price for which
o(SHT—6X)=5+D— X, (13.15¢)

as noted earlier in the discussion of Figure 13.1."

9Recall that the function N(b) was used for the first time in Chapter 11. The subscript | is used
here only to contrast the univariate integral from the bivariate integral.

“More details about the bivariate normal probability, as well as a method of computation and a
numerical example, are contained in Appendix 13.1.

U Roll (1977) provides a framework for analytically valuing the American call option. The valuation

formula (13.15b) is from Whaley (1981).
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In equation (13.15a), the American call formula is the sum of the present
values of two conditional expected values—the present value of the expected early
exercise value of the option conditional on early exercise, S'N(b)) — (X —
D)e "N,(b,), and the present value of the expected terminal exercise value of the
call conditional on no early exercise, S*N,(a,, —b; —\/;/7" Yy — Xe "Nya,, —b,;
—\/ﬁ). The term N,(b,) is the probability that the call option will be exercised
early, and the term N,(a,, — b,; —\/t/—T) is the joint probability that the call option
will not be exercised early and will be in-the-money at expiration.

Note that as the amount of the dividend approaches the present value of the
interest income that would be earned by deferring exercise until expiration, that is,
D — X[1 — e "77"], the value of S approaches +, the values of N,(b,) and
N,(b,) approach 0, the values of N,(a,, —b;; —\/ﬁ) and N,(a,, —b,;, — \/;7[")
approach N,(a,) and N (a,), respectively, and the American call option formula
(13.15b) becomes the dividend-adjusted Black—Scholes European call option for-
mula (13.13).

EXAMPLE 13.1

Compute the value of an American-style call option whose exercise price is $50
and whose time to expiration is 90 days. Assume the riskless rate of interest is 10
percent annually, the underlying stock price is $50, the standard deviation of the
rate of return of the stock is 30 percent, and the stock pays a dividend of $2 in
exactly 60 days.

We compute the value of this call first using the European formula (13.13)
and then using the American formula (13.15b). In this way, we can identify the
value of the early exercise premium on the call.

The current stock price net of the present value of the promised dividend is

5% = 50 — 2¢10(60/365) — 48 033,
so the European call value can be computed as

¢ = 48.033 N, (d;) — 50e~10090/365) 7, (dy),

where
. [In(48.033/50) + (.10 + .5(.30)*)(90/365)] _ _
' :301/90/365 '
and d, = —.029 — .149 = —.178. The probabilities N,(—.029) and N,(—.178)

are .488 and .429, so the European call value is

¢ = 48.033(.488) — 48.782(.429) = 2.51.
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Prior to applying the valuation equation for the American call option on a
dividend-paying stock (13.15b), we must determine if there is a chance of early
exercise. Recall that if condition (13.7) holds, the call will not be exercised early.
Substituting the exercise values into (13.7), we find

2> 50[1 _ e-—.lO(gO—ﬁU)/365} — 409,

showing that early exercise is not precluded and that formula (13.15b) should be

used.
The value of the American call is now computed as

C = 48.033[N1 (bl) + No (al, —by; —/ t/'l;)]
_ 506——.10{90/365) [Nl(b2)€'10(30/365) + Ng(ag, __bz; _ /t/T)]
+ 26*.10(60/365)Nl(b2),

where /T = (60/365)/(90/365) = 60/90 = .667,

. = In(48.033/50) + (.10 +.5(.30)*)(90/365) _

.30,/90/365

, _ In(48.033/49.824) + (10 + 5(.30)*)(60/365)] _ _ g

o :30./60/365

and
by = —.105 — .30\/60/36 = —.227.

The values b, and b, depend on the critical ex-dividend stock price S, which is
determined by

(S},30/365;50) = S; +2 — 50

and, in this example, equals 49.824. The bivariate normal probabilities are N,(a,,
—b,; —p) = .1135 and Nya,, —b,; —p) = .1056, and the univariate normal
probabilities are N,(b,) = 4581 and N,(b,) = .4103. The value of the American
call is 2.931; hence, the early exercise premium on the American option is 2.931
— 2.513 = 418.
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TABLE 13.4 Simulated American and European call option values on a stock
with a known discrete dividend. The call option has an exercise price of $50
and a time to expiration of 90 days. The riskless rate of interest is 10 percent,
and the standard deviation of the stock return is 30 percent. The stock pays
a dividend of $2 in 60 days.

European American Early
Stock Call Call Exercise
Price Price Price Premium
S c(S,T; X) C(S,T;X) €c
40 .126 136 011
45 760 867 107
50 2.515 2.931 418
55 5.610 6.481 871
60 9.726 10.974 1.248

The size of the early exercise premium of an American call option on a div-
idend-paying stock becomes larger as the option goes deeper in the money. In Table
13.4, we extend the results of Example 13.1 by allowing the stock price to vary
from $40 to $60. It is interesting to note that the dividend payment induces a fairly
large early exercise premium on the call option, particularly when the call is deep
in-the-money. At a $60 stock price, for example, the value of the early exercise
premium is about $1.25, more than 11 percent of the call’s overall value.

Dividend Spreads

In practice, not all call options are exercised when they shouid be. And, when they
are not, there are ways to profit risklessly. Consider, for example, two in-the-money
call options written on a stock that is about to pay a dividend. Assume the deeper
in-the-money call is sold and the other is purchased. Now, on the day before ex-
dividend, exercise the purchased option and wait. If the holder of the deeper in-
the-money call exercises her option before ex-dividend, deliver the stock received
from the exercise of the purchased option and pay the net difference between the
exercise prices of the options. On the other hand, suppose the holder of the deeper
in-the-money call option forgets to exercise her option. In this case, sell the stock
the next morning and buy back the remaining option. In the first case, profit equals
zero, and, in the second, a profit in the amount of the dividend would be received.
A numerical example may serve to clarify this strategy.

Assume that a stock is currently priced at $60 and will pay a $2.00 dividend
tomorrow. Call options with exercise prices of 50 and 55 and time to expiration of
30 days are priced at $10.01 and $5.01, respectively. (The riskless rate of interest
is assumed to be 10 percent, and the standard deviation of stock returns is 30 per-
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cent.) Now, assume the 50 call is sold, and the 55 call is purchased, yielding net
proceeds at the outset of $5.00. At the end of the day, the investor exercises the
55 call, receiving proceeds S,_, + 2.00 — 55. (Day ¢+ — 1 is the day before ex-
dividend, and the notation §,_, is the stock price net of the value of the escrowed
dividend.) If the 50 call option is exercised against the investor before ex-dividend
(which will not be known until the next day before market opening), the investor’s
obligation is — (S, + 2.00 — 50), and the net terminal value is S, + 2.00 — 55 —
S, — 2.00 + 50 or —$5, exactly a wash, considering $5 was collected up front.
However, if the 50 call option is not exercised, the investor goes into the next
morning with a long position in the stock (acquired from exercising the 55 cail)
and a short position in the 50 call, which has a value S, + 2.00 — 55 — C.. For
all intents and purposes, this position is riskless because the uncertainty in the value
of the long stock position is offset by that of the short in-the-money call. The out-
standing call, being deep in-the-money, is selling for about its floor value of S, —
50, so the net value of the position is 2.00 — 55 + 50 or —$3. Net of the initial
cash receipt of $5, the profit is $2.00, exactly the amount of the dividend. This
strategy is usually called a dividend capture or a dividend spread.

13.4 VALUATION OF PUT OPTIONS ON STOCKS

European Put Option on Non-Dividend-Paying Stocks
The valuation equation of a European put option on a non-dividend-paying stock
is

p(S,T;X) = Xe "IN (—dy) — SN(dy), {13.16)

where

In(S/X) + (r + 50T
— - ,

This result follows straightforwardly from substituting the riskless rate of interest,
r, for the cost-of-carry rate, b, in equation (11.28) from Chapter 11.

dl and dg = d1 - O’\/rf.

European Put Option on Dividend-Paying Stocks

Like the European call option on a dividend-paying stock, the European put option
on a dividend-paying stock is obtained by substituting the stock price net of the
present value of the dividend, $* = § — De™", for the stock price parameter in
the European option pricing formula. The valuation equation of a European put
option on a dividend-paying stock is

p(S,T;X) = Xe "TN(~dy) — S*N(~d,), (13.17)
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where

_ In(87/X) + (r + .50%)T
_ o

Note that the put value increases as a result of the cash disbursement on the stock.

d1 , and do =d; — oVT.

American Put Option on Non-Dividend-Paying Stocks

The American put option on a non-dividend-paying stock is not a tractable problem
from a mathematical standpoint, as was noted in Chapter 11. For this reason,
numerical methods must be used to approximate the value of the put. The approach
used here is the binomial method.'”” The binomial method assumes the stock price
moves in discrete jumps over discrete intervals of time. The up-and-down steps in
stock price are defined as a proportion of the stock price at the previous interval.
If the current stock price is S,, the stock price at the end of the first interval is
either uS, or dS,. If the total number of time steps is defined as n, where At = T/n
and T is the time to expiration of the option, there are n + 1 possible stock prices
at the option’s expiration. This binomial lattice is illustrated in Figure 13.3. The
length of each interval or time step in the figure is At. The factors u and d are
defined as®

o VAL (13.18a)

and

d=—. (13.18b)

(13.18¢})

and 1 — p, respectively, where r* = ™.

Figure 13.4 provides a numerical illustration of the binomial lattice for the
stock price. The current stock price, S, is 50, the riskless rate of interest, 7, s 10
percent, and the standard deviation of stock returns, o, is 30 percent. The time to
expiration of the option, 7, is 90 days, and the number of time steps, 7, is 90. The

2Gee Cox, Ross, and Rubinstein (1979).
The factors are consistent with the Black—Scholes model. See Cox, Ross, and Rubinstein (1979)
for details.
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FIGURE 13.3 Possible paths that the stock price may follow under the
binomial model.

Stock price at end of time intervat:

0] 1 2 3 4 -« nleven) or n(odd)
uf'Sy unSg
U4SO
u3SO
U250 UZSO
USO USQ USO
So So So So
dS, dSo dSy
d25, a2s,
d3S,
d*S,
dnSg anSy

FIGURE 13.4 Possible paths that the stock price may follow under the
binomial model, where the current stock price is 50, the
riskless rate of interest is 10 percent annually, and the
standard deviation of stock returns is 30 percent
annually. The time to expiration of the option is 90 days,
and the number of time steps is also 90. The time incre-
ment At is, therefore, 1 day or .00274 years.

Stock price at end of time interval:

0 1 2 3 4 90 days
205.46
53.24
52.41
51.60 51.60
50.79 50.79
50 50 50 50
49,22 49.22
48.45 48.45
47.70
46.96

12.17
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size of the time increment At is, therefore, one day or 00274 years. Based on this
information, the factors u and d are

and

1

4= 101583

= .98442.

Also, the probabilities of up-and-down movements are

6'10('00274) — 98442 _

_c @

P="TomsR3_ 0844z o0

and 1 — p = .4952. Note that, in Figure 13.4, possible stock prices range from
Sed” = 50(.98442)° = 12.17 to Sou" = 50(1.0158267)" = 205.46 at the option’s
expiration.

With the stock price lattice computed, the approximation method starts at the
end of the option’s life and works back to the present, one increment, At, at a time.
At the end of the option’s life (column n in the figure), the option value at each
stock price node is given by the intrinsic value of the put option, that is,

where S, ;> X

Pn.j(Sng) = {X — Sn;  where Sn; <X (13.19)

The option values one step back in time (in column n — 1) are computed by
taking the present value of the expected future value of the option. At any point j
in column n — 1, the stock price can move up with probability p or down with
probability 1 — p. The value of the option at time n if the stock price moves up
is P,;,, and if the stock price moves down is P,. The present value of the expected
future value of the option is, therefore,

_ pPryr1+ (- P)Prn,j

P,_1;= s (13.20)

where r* = e Using this present value formulation, all of the option values in
column n — 1 may be identified.

Before proceeding back another time increment, Af, in the valuation, it 18
necessary to see if any of the computed option values are below their early exercise
proceeds at the respective nodes, X — S, If the exercise proceeds are greater
than the computed option value, the computed value is replaced with the early exer-
cise proceeds. If they are not, the value is left undisturbed. If this step is not per-
formed, the procedure will produce the value of a European put option.
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Once the checks are performed, we go to column n — 2, repeat the steps and
so on back through time. Eventually, we will work our way back to time 0, and
the current value of the American put option (in column 0) will be identified.

To complete the binomial method illustration, suppose that the stock price
lattice shown in Figure 13.4 underlies a 90-day American put option with an exer-
cise price of 50. Applying the binomial method, the value of the American put is
$2.475. The value of this put using the European formula (13.16) is $2.364, which
means that the early exercise premium of the American put is worth about 11.1¢.
Note that the value produced by the binomial method for the European put (by not
checking for the early exercise constraints) is $2.355, which is different from the
$2.364 obtained using the European formula. This is error due to the fact that the
binomial method is only an approximation. In general, the accuracy of the binomial
method increases with the number of time steps, holding other factors constant.

American Put Option on Dividend-Paying Stocks

The binomial method is also well suited to handle the case of valuing an American
put option on a dividend-paying stock. If the dividends paid during the put’s life
are known with certainty, we first subtract the present value of the dividends from
the current stock price, that is,

S§ =So— Y Die ™, (13.21)
i=1

where D, (¢;) is the amount of (time to) the /-th dividend paid during the option’s
life and S, is the current stock price. Next, we set up the binomial lattice, beginning
with Sj rather than S,. That is, if the current stock price net of dividends is S;, the
stock price at the end of the first time interval is either uS; or dS,. The values of
u, d, and p are computed as (13.18a), (13.18b), and (13.18c).

With the stock price lattice (net of dividends) computed, the approximation
method starts at the end of the option’s life and works back to the present. At the
end of the option’s life, the option value at each stock price node is given by the
intrinsic value of the put (13.19), where S replaces S. The option values one step
back in time (at time » — 1) are computed by taking the present value of the
expected future value of the option (13.20). Before stepping back another time
increment, it is again necessary to see if any of the option values are below their
early exercise value. Here is where dividends may enter the picture again. If no
dividends are paid at time n — 1, then the early exercise value is simply the exer-
cise price less the lattice stock price. If a dividend is paid at time n — 1, however,
the early exercise proceeds equal the exercise price less the lattice stock price less
the dividend. If any of the computed option values are below the exercise proceeds,
they are replaced with the value of the exercise proceeds.

As we repeat the process and step back further in time, we must keep track
of the sum of the present values of the dividends paid during the option’s remaining
life. At time n — 1, there was only one dividend and it was paid at time n — 1,
so the sum equals the value of the single dividend paid at time n — 1. If we are
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at time n — 2 and there is a dividend paid at time n — 2 as well as a dividend
paid at time n — 1, the sum of the present values of the promised dividends that
should be included in the early exercise boundary check at time n — 2 is

Dn—l

rx

PVDp_o=Dp_2+ (13.22)

In other words, the early exercise boundary at time n — 2 is X — Sh-2; —
PVD,_,. By the time the iterative procedure is complete, the early exercise bound-
ary used to check the option price corresponding to the time 0 stock index level
node will include the present value of all promised dividends as in equation (13.21).

EXAMPLE 13.2

Compute the value of an American-style put option that has an exercise price of
$50 and a time to expiration of 90 days. Assume the riskless rate of interest is 10
percent annually, the stock price is $50, the standard deviation of the rate of return
of the stock is 30 percent per year, and the stock pays a dividend of $2 in exactly
60 days.

We proceed in two distinct steps. First we compute the European put option
value using the formula (13.17), and then we compute the American put option
value using the binomial method. In this way, we can identify the value of the early
exercise premium on the put.

The current stock price net of the present value of the promised dividend is

§% = 50 — 2¢~10(80/365) — 48.033,
so the European put value can be computed as

p = 50e™ 100/365) Ny (~dy) — 48.033N1(—d1),

where
_ [1n(48.033/50) + (.10 + .5(.30)2)(90/365)] — 029
' :30,/90/365 '
and d, = —.029 — 149 = —.178. The probabilities N,(.029) and N,(.178) are

512 and .571, so the European call value is
p = 48.782(.571) — 48.033(.512) = 3.26.

The value of the American put is computed using the binomial method. The
number of time steps is set equal to 90, so the time increment Af is one day or
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Once the checks are performed, we go to column n — 2, repeat the steps and
so on back through time. Eventually, we will work our way back to time 0, and
the current value of the American put option (in column 0) will be identified.

To complete the binomial method illustration, suppose that the stock price
lattice shown in Figure 13.4 underlies a 90-day American put option with an exer-
cise price of 50. Applying the binomial method, the value of the American put is
$2.475. The value of this put using the European formula (13.16) is $2.364, which
means that the early exercise premium of the American put is worth about 11.1¢.
Note that the value produced by the binomial method for the European put (by not
checking for the early exercise constraints) is $2.355, which is different from the
$2.364 obtained using the European formula. This is error due to the fact that the
binomial method is only an approximation. In general, the accuracy of the binomial
method increases with the number of time steps, holding other factors constant.

American Put Option on Dividend-Paying Stocks

The binomial method is also well suited to handle the case of valuing an American
put option on a dividend-paying stock. If the dividends paid during the put’s life
are known with certainty, we first subtract the present value of the dividends from
the current stock price, that is,

S§ = So—»_ Die™™, (13.21)
i=1

where D; (¢;) is the amount of (time to) the i-th dividend paid during the option’s
life and S, is the current stock price. Next, we set up the binomial lattice, beginning
with Sj rather than S,. That is, if the current stock price net of dividends is S, the
stock price at the end of the first time interval is either uS; or dS;. The values of
u, d, and p are computed as (13.18a), (13.18b), and (13.18c).

With the stock price lattice (net of dividends) computed, the approximation
method starts at the end of the option’s life and works back to the present. At the
end of the option’s life, the option value at each stock price node is given by the
intrinsic value of the put (13.19), where S" replaces S. The option values one step
back in time (at time n — 1) are computed by taking the present value of the
expected future value of the option (13.20). Before stepping back another time
increment, it is again necessary to see if any of the option values are below their
early exercise value. Here is where dividends may enter the picture again. If no
dividends are paid at time n — 1, then the early exercise value is simply the exer-
cise price less the lattice stock price. If a dividend is paid at time n — 1, however,
the early exercise proceeds equal the exercise price less the lattice stock price less
the dividend. If any of the computed option values are below the exercise proceeds,
they are replaced with the value of the exercise proceeds.

As we repeat the process and step back further in time, we must keep track
of the sum of the present values of the dividends paid during the option’s remaining
life. At time n — 1, there was only one dividend and it was paid at time n — 1,
so the sum equals the value of the single dividend paid at time n — 1. If we are
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at time n — 2 and there is a dividend paid at time n — 2 as well as a dividend
paid at time n — 1, the sum of the present values of the promised dividends that
should be included in the early exercise boundary check at time n — 2 is

D, _
PVDy 3 =Du-2+— L. (13.22)
In other words, the early exercise boundary at time n — 2 is X — S,-2; —

PVD,_,. By the time the iterative procedure is complete, the early exercise bound-
ary used to check the option price corresponding to the time 0 stock index level
node will include the present value of all promised dividends as in equation (13.21).

EXAMPLE 13.2

Compute the value of an American-style put option that has an exercise price of
$50 and a time to expiration of 90 days. Assume the riskless rate of interest is 10
percent annually, the stock price is $50, the standard deviation of the rate of return
of the stock is 30 percent per year, and the stock pays a dividend of $2 in exactly
60 days.

We proceed in two distinct steps. First we compute the European put option
value using the formula (13.17), and then we compute the American put option
value using the binomial method. In this way, we can identify the value of the early
exercise premium on the put.

The current stock price net of the present value of the promised dividend is

§% = 50 — 2¢~10(60/365) = 48.033,
so the European put value can be computed as

p = 50e - 10O0/3) Ny (—dp) — 48.033N1(—d1),

where
. _ [In(48.033/50) + (10 + 5(.30)2)(90/365)] _ _ og
! :30,/90/365 '
and d, = —.020 — .149 = —.178. The probabilities N\(.029) and N,(.178) are

512 and .571, so the European call value is
p = 48.782(.571) — 48.033(.512) = 3.26.

The value of the American put is computed using the binomial method. The
number of time steps is set equal to 90, so the time increment Af is one day or



Chapter 13 Common Stock Option Contracts 331

00274 years. The values of the factors 4 and d are u = >~ %%* = 1.01583, and
d = 1/.01583 = .98442, with probabilities p = (e'%* — 98442)/(1.01583 ~
.98442) = 5048 and 1 — p = .4952, respectively. The possible values of the
stock price (net of dividends) at the option’s expiration range from 11.69 to 197.38.
The value of the American put is 3.393, hence the early exercise premium on the
American option is 3.393 — 3.262 = .131.

Table 13.5 demonstrates how the value of the early exercise premium
increases as the put option goes deeper in-the-money. At a stock price of $40, for
example, the early exercise premium is about 35¢, about 3 percent of the overall
option value.

Finally, it is worthwhile to note that the dividend-adjusted binomial procedure
outlined above not only handles an American put option on a dividend-paying stock
but also handles American call options. Where the stock pays only a single dividend
during the option’s life, the American call option valuation equation (13.15b) is the
most computationally efficient. Where the stock pays multiple dividends, however,
the dividend-adjusted binomial method is much faster. We address this issue again
when we value the American-style S&P 100 index options in the next chapter.

13.5 RIGHTS AND WARRANTS

Rights and warrants are securities issued by the firm. Usually, they are attached to
debt offerings by the firm in order to reduce the coupon interest cost. Like call
options, rights and warrants provide holders with the right to buy the underlying
stock at a predetermined price within a specified period of time. Unlike call options,
however, warrants are issued by the firm. Since the firm has a fixed amount of
assets, the exercise of rights or warrants means that there will be more stockholders

TABLE 13.5 Simulated American and European put option values on a
stock with a known discrete dividend. The put option has an exercise price
of $50 and a time to expiration of 90 days. The riskless rate of interest is 10
percent, and the standard deviation of the stock return is 30 percent. The
stock pays a dividend of $2 in 60 days.

European American Early
Stock Put Put Exercise
Price Price Price Premium
S p(S,T; X) P(S,T; X) €p
40 10.875 11.230 .355
45 6.510 6.757 .247
50 3.264 3.393 129
55 1.360 1.406 .046

60 476 492 .016
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sharing the same “pie,” hence the value of existing shares will be diluted. Warrant
valuation must account for this dilutionary effect.

In this section, we value rights and warrants explicitly recognizing the effects
of dilution.'* Effectively, there is little distinction between rights and warrants from
a valuation standpoint. Rights tend to be short-term and at-the-money when they
are issued; warrants tend to be long-term and out-of-the-money. For convenience,
we use only the term ‘‘warrants” in the remaining part of this section.”” The val-
uation approach is like that used in Chapter 11. Because a riskless hedge can be
formed between the warrant and the value of the firm, we suffer no loss of gen-
erality and gain considerable mathematical tractability if we invoke an assumption
of risk-neutrality.

Let S be the aggregate market value of the shares of the common stock cur-
rently outstanding; W, the aggregate market value of all warrants; r, the riskless
rate of interest; and, V, the total market value of the firm. The firm is assumed to
have only two sources of financing—stock and warrants—so the total market value
of the firm may be defined as V = § + W. The number of shares of stock out-
standing is ng, and ny is the number of shares of stock sold if warrants are exercised.
One warrant is assumed to provide the right to buy one share. The dilution factor
possible due to the presence of the warrants is y = ny/(ns + nw)- The stock is
assumed to pay no dividends during the warrant’s life. The standard deviation of
the overall rate of return on the firm is o. Finally, the warrant contract parameters
are T, the time to expiration of warrants, and X, the aggregate amount paid by
warrant holders to acquire the stock (i.e., the aggregate exercise price).

The assumptions used in the development of the warrant valuation equation
are the same as those underlying the European call option except it is assumed the
total market value of the firm is lognormally distributed at the warrants’ expiration,
not the firm’s share price (i.e., In(V,/V) is normally distributed with variance o).

Using risk-neutral valuation, the value of the firm’s warrants today is the pres-
ent value of the expected future terminal value, that is,

W = e "TE(Wr). (13.23)

The terminal value of the warrants, in turn, is the proportion of the firm that the
warrant holders will own if the warrants are exercised, v, times the terminal value
of the firm after the warrant holders pay the cash exercise amount, vV, + X, less
the cash exercise amount, X, that is,

(13.24}

T= o0 i (Ve + X) < X,

N {7(VT+X)—X if y(Vr+X)2>2X

14The approach used here is based on Smith (1976).
S Executive stock options, a popular form of management incentive compensation, can be consid-
ered warrants from a valuation standpoint.
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which can be rewritten

. Vr—(1-9)X if AV > (1—9)X
WT:__{'YT (1= if yVr>(1-7) (13.25)

0 if yVr<(1-7)X.

Note the similarity between the structure of the warrants payoffs in (13.25) and the
European call option payoffs discussed in Chapter 11, that is,

Sr—X if S>> X
aT={ T noeT = (13.26)

0 if Sr<X.

In Chapter 11, we showed that the expected terminal value of the European call
option for a non-dividend-paying common stock is

E(er) = eTTSN(dl) — XN(dy), {13.27)

where

502)T
dlzln(S/X)-i-(r-i- 50°) and dy = dy — oVT,

oV'T

where S; is lognormally distributed. In the warrant valuation problem, yV; corre- ,
sponds to the terminal stock price Sy and is assumed to be lognormally distributed.
The term (1 — )X is certain and corresponds to the exercise price of the stock
option. It therefore follows that

E(Wr) = e TyVN(d1) — (1 — v) X N(d2), (13.28)

where

g = V(A - X)] + (r + 50T
1 or\/T

Substituting (13.28) into (13.23), we find that the aggregate market value of the
warrants of the firm is

and dy =d; —oVT.

W =~VN(d)) —e "7 (1 — v) X N(d2), {13.29)

where

_ In[yV/((1 = MX)] + (r + .50*)T
oVT

The market value per warrant is simply W from (13.29) divided by n,,.

dl and dz=d1—0’ﬁ.
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One problem with applying (13.29) to value warrants is that it is difficult to
estimate the volatility rate of the firm, o. To estimate this parameter using historical
data requires a time series of prices for both the stock and the warrant. Since the
warrants may not actively trade, acquiring the historical price series for the warrant
may be difficult. On the other hand, estimating the volatility rate of the stock, oy,
is much easier since stocks are more actively traded and historical daily prices are
available from a variety of sources. In addition, if the stock has listed options, the
stock option pricing model can be used to compute the implied volatility rate of
the stock.

Fortunately, the warrant valuation equation can be reformulated in terms of
the stock’s volatility rate rather than the volatility rate of the firm.'® Since the rate
of return on the stock is perfectly correlated with the rate of return on the overall
firm,

os = Nsy o, {13.30}

where 7, is the elasticity of the stock price with respect to the value of the firm,
that is, the percentage change in stock price for a given percentage change in the
value of the firm. To estimate mj,, first recall that by assumption the firm’s value
is the sum of the market value of the stock and the market value of warrants. Thus,

S=V-Ww

The change in the market value of the stock for a given change in the value of the
firm is, therefore,

o5 _, W
ov v’

Second, from the valuation equation (13.29), we know that

ow
5‘7 = ’YN(dl)a
SO
as
3V =1-—~vN(dy). (13.31)

'This idea was first suggested by Schulz and Trautmann (1991).
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Finally, multiplying this term by V/S, we find that the elasticity of the stock price
with respect to the value of the firm is

8S/S

= =7 - 13.32
nsv VIV {13.32)

[I“YN(dl)]g-

Hence, to value the warrant as a function of the stock’s volatility rate, we simply
substitute the following term for the o in (13.29):

1
o=—0g
nsv
S

[l_’YN(dl)]Vas. {13.33)

Another somewhat perplexing consideration in applying (13.29) to value war-
rants is that the warrant value appears on both sides of the equation, directly on
the left-hand side and indirectly through V (i.e., W is embedded in V) on the right-
hand side. This poses no great difficulty. We simply find the value of W that sat-
isfies the equation through some sort of numerical search procedure, just as we do
when finding the yield to maturity of a coupon-bearing bond.

EXAMPLE 13.3

Compute the value of a one-year warrant whose exercise price is $50. The current

stock price is $50, and the stock pays no dividends. The firm has only two sources

of financing: 2,000 shares of stock and 500 warrants. One warrant entitles its holder

to one share of common stock. Assume that the riskless rate of interest is 6 percent,

and that the standard deviation of the rate of return on the firm is 30 percent.
The dilution factor posed by the warrants is

_ 50,
YT 20004500 7

the aggregate exercise proceeds to the firm are
X =500 x 50 = 25, 000,
and the market value of the firm is
V = 2,000 x 50 + W = 100,000 + W.

The aggregate market value of the warrants is computed by solving
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W = .2(100,000 + W)N(d;) — e~ %)) .8(25,000) N (d2),

where

In[.2(100, 000 + W)/(.8(25,000))] + (.06 + .5(.30)*)1
30v/1

d =
and
dy = dy — .30V/1.

The solution to this problem is obtained iteratively. The values of d, and d,
on the final iteration are .4611 and .1611, respectively. The probabilities are
N(.4611) = .6776 and N(.1611) = .5640. The aggregate market value of the war-
rants is $3,389.46, so the price per warrant is $6.78.

In the interest of completeness, it is worthwhile to note that the volatility rate

of the stock in this exercise equals

[ =aN@)V
=0
S
[1 - .2(.6776)]103,389.46
100, 000

Js

= .30

= .2681.

The volatility rate of the stock is lower than the volatility rate of the overall firm
so the volatility rate of the warrants must be higher. Since the returns of the stock
and the warrant are perfectly correlated,

omon () oo ()

Therefore, the warrant volatility rate is

) = 1.3002.

00 1 .
ow = [.3000_ 2661 ( 100,0 )} ( 03, 389.46

103, 389.46 3, 389.46

13.6 SUMMARY

The focus of this chapter is stock options. Following a description of exchange-
traded stock options in the first section, we adapt the general pricing principles of
Chapters 10 and 11 to value call and put options on non-dividend-paying stocks.
The principles are modified somewhat to account for the fact that common stocks
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typically pay discrete dividends during the option’s life. We assume that the amount
and the timing of the dividends paid during the option’s life are known with
certainty.

In this chapter, we also introduce the use of the binomial method to price
American options. Although the specific application in this chapter is American-
style options on stocks, the binomial method can be applied to the valuation of
virtually any type of option. We use it again in Chapter 15, for example, to value
interest rate options.

Finally, a special type of call option on common stock is considered. Spe-
cifically, firms often issue rights or warrants to raise new capital. Like call options,
these contracts provide the holder with the right to buy the common shares of the
firm at a fixed price within a specified period of time. Unlike call options, however,
the firm sells (or gives away) the options, so, if the rights/warrants are exercised,
the firm faces the prospect of having the equity of the firm diluted. The prospect
of dilution has an important effect on warrant price.



APPROXIMATION FOR THE CUMULATIVE BIVARIATE NORMAL
DENSITY FUNCTION

In Appendix 11.2, a cumulative univariate normal density function approximation
was provided to help compute the value of options on commodities with a constant,
proportional cost-of-carry rate. In this chapter, we found that if a common stock
pays a discrete dividend during the option’s life, the American call option valuation
equation requires the evaluation of a cumulative bivariate normal density function.
While there are many available approximations for the cumulative bivariate normal
distribution, the approximation provided here relies on Gaussian quadratures.' The
approach is straightforward and efficient, and its maximum absolute error is
.00000055.

The probability that x is less than @ and that y is less than b for a standardized
bivariate normal distribution is

1 a rb z2? — 2pzy + y°
Prob{z < a and <b=———-——_/ / ex [— - dx da
( y<?) 2my/1 — p? Jooo J -0 P 2(1 — p?) Y
= N2(a1b;p)’

where p is the correlation between the random variables x and y.
The first step in the approximation of the bivariate normal probability
N,(a,b;p) involves developing a routine that evaluates the function ¢{a,b;p) below:

5 5
¢(a,b; p) ~ .31830989/1— p2 > > wiw; f (=i, z;), 1

i=1 j=1
where

Flzi, z;) = explar (2z; — a1) + b1(2z; — br) + 2p(zi — a1)(z; — b)), (2)

the pairs of weights (w) and corresponding abscissa values (x) are:

1,7 w T
1 .24840615 .10024215
2 .39233107 48281397
3 21141819 1.0609498
4 033246660 1.7797294
5 .00082485334 2.6697604

'The Gaussian quadrature method for approximating the bivariate normal is from Drezner (1978),
and the Gaussian quadratures for the intergral are from Steen, Byrne, and Gelbard (1969). For a con-
tingency table approach to this problem, sce Wang (1987).
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and the coefficients a, and b, are computed using

a b

= and bl D= eI
EV.To ) V2T =)

The second step in the approximation involves computing the product, abp.

If abp < 0, compute the bivariate normal probability, N,(a,b;p), using the following
rules:

1.Ifa=0,b=0,and p = 0, then Ny(a,b;p) = ¢(a,b;p).

2.Ifa=0,b>0,and p > 0, then N,(a,b;p) = N(a) — Pla,—b;,—p).

3. Ifa>0, b <0, and p > 0, then Ny(a,b;p) = N(b) — d(—a,b;,—p).

4. If a >0, b > 0, and p = 0, then Ny(a,b;p) = Ni(a) + N(b) — | +
¢(—a,—b;p).

If abp > 0, compute the bivariate normal probability, N,(a,b;p), as:
Na(a, b; p) = Na(a,0; pap) + N2(b,0; pra) — 6,

where the values of N,(-) on the right-hand side are computed from the rules for
abp = 0,

(pa — b)Sgn(a) - (pb — a)Sgn(b)
“ 7 Va% = 2pab + b?’

G,b = )
P Va2 — 2pab + b?

o

_ 1 —Sgn(a) x Sgn(b)
= n ,

and

1 x>0
-1 z<0.

Sgu(z) = {
N,(d) is the cumulative univariate normal probability. An approximation for N (d)
is contained in Appendix 11.2.
Finally, to assist those who may attempt to code this algorithm, sample com-
putations for the bivariate normal probabilities are shown on page 340:
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a b p
-1.00 -1.00 -.50
-1.00 1.00 -.50

1.00 -1.00 -.50
1.00 1.00 -.50
-1.00 -1.00 .50
-1.00 1.00 .50
1.00 -1.00 .50
1.00 1.00 .50
.00 .00 .00
.00 .00 -.50
.00 .00 .50

N2(a1 ba rO)

003782
.096141
.096141
.686472
062514
154873
154873
745203
.250000
.166667
333333

Part Three Options

EXAMPLE 13.A

Compute the risk-neutral probability that IBM and GM will have stock prices above
$120 and $60, respectively, at the end of two months. The current price of IBM is
$107 and the current price of GM is $48. Assume the riskless rate of interest is 10
percent annually, IBM and GM returns are bivariate normally distributed, IBM has
a return volatility of 33 percent annually, GM has a return volatility of 36 percent
annually, and the correlation between the returns of the two stocks is .6. Neither

stock pays a dividend during the next two months.

The first step in finding this probability is to compute the upper integral limits
for the standardized normal bivariate density function.

For IBM, the computation is

334/2/12

and, for GM, the computation is

b=

[In(107/120) + (.10 — 5(.33)2)(2/12)] _

In(48/60) + (.10 — 5(.36)*)(2/12)] _ | ,-qy

36+/2/12

—.7948

The next step is to apply an approximation method to compute the bivariate
normal probability. Applying the procedure described above, the probability is

Na(a,b; p) = Na(—.7948, —1.4784; .6) = .0463.

The probability that in two months IBM will have a stock price above 120 and that
GM will have a stock price above 60 is slightly more than 4.6 percent.
It is instructive to note that the individual probabilities of each stock realizing

its crtitical future value are

Ni(a) = Ni(—.7948) = .2134 and N;(b) = N;(—1.4784) = .0697,



Appendix 13.1 341

for IBM and GM, respectively. Thus, if the returns of IBM and GM were inde-
pendent (i.e., their return correlation is 0), the probability that in two months IBM
will have a stock price above 120 and that GM will have a stock price above 60
is .2134 X .0697 or about 1.49 percent. The reason that this probability is less than
the 4.6 percent where the correlation is .6 is that, with high positive return corre-
lation, an upward movement in IBM’s stock price implies that GM’s stock price
will tend to move upward also. In the extreme case where these two stocks have
perfect positive correlation (i.e., p = + 1), the probability that in two months IBM
will have a stock price above 120 and that GM will have a stock price above 60
is the lower of the two univariate probabilities, 6.97 percent.




