Arguably, the most exciting financial innovation of the 1980s has been the intro-
duction of stock index futures contracts. These contracts, written on the value of
various stock index portfolios, provide important benefits to stock portfolio man-
agers. The uses and benefits of these contracts are described in this chapter. We
begin with a description of the history of stock index futures contracts in the U.S.
and an explanation of current contract designs. The second section details the com-
position of the stock indexes that underlie currently traded index futures contracts.
Section 3 describes the index arbitrage that holds the cost of carry relation in align-
ment and explains the concept of “program trading.” In section 4, the intraday
price behavior of the index and its futures contracts is investigated to see how well
the price movements in the two markets are synchronized. The chapter concludes
with an illustration of hedging with stock index futures contracts.

7.1 STOCK INDEX FUTURES MARKETS

The first stock index futures contract was introduced in February 1982 by the Kan-
sas City Board of Trade. This contract, the Value Line futures contract, is written
on the Value Line Composite Index, a stock index that consists of approximately
1700 stocks from the New York, American, and OTC stock markets.' The Chicago
Mercantile Exchange quickly followed suit in April 1982 with a futures contract
on the S&P 500 stock index, and then the Chicago Board of Trade in July 1984
followed with a futures contract on the Major Market Index. Other stock index

*The composition of the various stock indexes is discussed in the next section.
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futures on over-the-counter stocks have been introduced, but most have failed.
Table 7.1 contains the contract specifications of the five stock index futures con-
tracts currently active in the U.S.

By far the most active stock index futures contract is that on the S&P 500
index. Table 7.1 shows that this contract trades at the Chicago Mercantile Exchange
from 8:30 AM to 3:15 PM (CST). On a given day, S&P 500 futures contracts
extending out four different maturities may trade. The contract maturities will be
the following March, June, September, and December. The last trading day of the
S&P 500 futures contract is the third Thursday of the contract month. Cash settle-
ment of the contract takes place at the opening prices of the index stocks on Friday.”
The contract denomination is S00 times the futures price. On November 13, 1991,
for example, the December 1991 futures price was $398.30, so the stock equivalent
of the futures is $398.30 X 500 or $199,150. The minimum price increment for
changes in the futures price is $.05 X 500 or $25. As of April 1991, the initial
speculative margin for the S&P 500 contracts was $22,000,> and the maintenance
margin was $9,000.

The specifications of the other index contracts are also shown in Table 7.1.
Next to the S&P 500, the most active markets are for the futures contracts on the
NYSE Composite Index and the Major Market Index. The Value Line futures con-
tracts have never been particularly active relative to their counterparts on the other
futures exchanges, probably because of the way in which the index level is com-
puted. The only difference between the Value Line and Mini Value Line index
futures contracts is that the latter contract is one-fifth the size of the former.

Table 7.2 contains a clipping from the Wall Street Journal showing prices for
the various index futures contracts as of the close of trading on Wednesday, Novem-
ber 13, 1991. Only the three nearby S&P 500 futures contracts were active on
November 13—the December 1991 and the March and June 1992 contracts. The
estimated trading volume on that day was 42,125 contracts. The implied dollar
stock equivalent of this volume of trading is at least $398.30 X 500 X 42,125 or
$8.39 billion. As is usually the case, the nearby futures contract is the most active,
as is reflected through the higher open interest figure for the December contract.
The underlying S&P 500 index level, 397.42, is also reported in the table, just
below the futures price summary.

7.2 COMPOSITION OF STOCK INDEXES

The indexes underlying the futures contracts contained in Tables 7.1 and 7.2 fall

into one of three general categories: (a) value-weighted arithmetic stock indexes;

*In June 1987, the Chicago Mercantile Exchange and the New York Futures Exchange changed
the settlement of their S&P 500 and NYSE index futures contracts from the close of trading to the open
in an attempt to mitigate concern about occasional abnormal stock price movements in the *‘triple witch-
ing hour.” The futures contracts on the Major Market and Value Line indexes continue to settle at the
close. For an analysis of the effects of this change, see Stoll and Whaley (1991).

*Margins are adjusted when the risk of the underlying index changes perceptibly. Prior to the Octo-
ber 19, 1987, stock market crash, speculative margin on the S&P 500 futures contract was $6,000.
Immediately following the crash, speculative margins were set as high as $20,000.

*The index composition is described later in this chapter.



Chapter 7 Stock Index Futures Contracts 101

TABLE 7.1 Contract specifications of stock index futures contracts trading
in the U.S.

Units/
Index Trading Contract Minimum Price Last Day of
(Exchange) Hours Months®  Fluctuation Trading®
S&P 500 (CME) 8:30-3:15 3,6,9,12 500 x index/ Third
(CST) .05 ($25) Thursday
NYSE Index 9:30-4:15 3,6,9,12 500 x index/ Thursday
(NYFE) (EST) .05 ($25) preceding

third Friday

Major Market 8:30-3:15 3 current 250 x index/ First business

Index (CBOT) (CST) months .05 ($12.50) day prior to
plus Saturday
3,6,9,12 following

third Friday

Value Line 8:30-3:15 3,6,9,12 500 x index/ Third

Index (KC) (CST) .05 (825) Friday

Mini Value Line  8:30-3:15 3,6,9,12 100 x index/ Third
Index (KC) (CST) .05 (85) Friday

a. The notation used in this column corresponds to the month of the calendar
year (e.g., 1 is January, 2 is February, and so on).

b. All stock index futures contracts are cash settled.

(b) price-weighted arithmetic indexes; and (c) equal-weighted geometric indexes.
The term arithmetic refers to the fact that the market values or returns of the indi-
vidual stocks are ‘‘added up.” The term geometric refers to the case where the
values or returns are “multiplied.” The S&P 500 and NYSE Composite indexes
are in the first category; the Major Market Index falls in the second; and the Value
Line Index falls in the third.

Value-Weighted Arithmetic Indexes

The “value” of the common stocks in a value-weighted index refers to the total
market capitalization of the firm’s outstanding shares, that is, the number of shares
outstanding (n,,) times the current price per share (p;,). The total market value of
the index at time ¢ is therefore

N
Total market value of index; = Zni,tpi,t, (7.1)

=1
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TABLE 7.2 Stock index futures contract prices at the close of trading on

Wednesday, November 13, 1991.

FUTURES

S&P 500 INDEX (CME) 500 times index
Open

Open High Low Settle Chg High Low Interest
Dec  395.00 398.50 394.30 398.30 + 1.00 401.50 316,50 139.341
Mr92  396.80 400.50 396.50 400.35 + 1.00 404.00 374.70 7.544
June 398.30 402.35 398.30 402.20 + 1.10 407.00 379.00 1,102
Est vol 42,125; vol Tues 41,413; open Int 148,048, +916.
Indx prelim High 397.42; Low 394.01; Close 397.42 +.68
NIKKE| 225 Stock Average (CME)-—$5 times NSA
Dec  24690. 24700. 24500. 24700. — 340. 28900. 22380. 10,869
Mr92 25250, 25250. 25170. 25230. — 340. 26725. 23000. 2,423
Est vol 1,107; vol Tues 1,132; open int 13,292, +467.
25‘{23 index: High 24814.35; Low 24416.23; Close 24416.23 —
NYSE COMPOSITE INDEX (NYFE) 500 times index
Dec  218.00 220.10 217.75 220.05 + .70 220.10 175.50 5,026

Mre2 maomoomaomou .80 221.00 207.60 746
June . 22200 + .80 220.10 208.90 172
Sept . 22,00 + .80 221 00 217.50 123
Est vol 5,057; vol Tues 5996; open int 6,067, +344.
The index: High 219.37; Low 217.64; Close 219 7 +.37

MAJOR MKT INDEX (CBYT) $500 times index
Nov  323.70 327.40 323.25 327.25 + 1.55 327.40 315.20 2,819
Dec  322.50 327.70 323.50 327.70 + 1.50 327.70 315.75 746
Est vol 2,500; vol Tues 1,163; open int 3,598, +122.
The index: Hlgh 327.25; Low 323.58; Close 327.25 +1.28

MGMI BASE METAL INDEX (FOX) 100 times Index
. 134.50 . 140.50 1

32.50 2,246
Dec 13480 ... 182,70 133.00 8,662
Ja92 coee el 13490 ... 137.10 132.30 120
Mar PP X L 3 1} ... 16020 132,60 2,843
June v e .o 13600 ... 155.90 134.50 962
Sept 136.80 146.60 134.60 149

Est vol 0. vol Tues 0. open Int 14,712, .
The Index: High 134.52; Low 133.58; Close 134.03 + .81

OTHER FUTURES

Settlement price of selected contract. Volume and open
Interest of all contract months.

KC Minl value Line (KC)-100 fimes Index

Dec 328.60 +.85; Est. vol. 100; Open inf, 254
KC Value Line Index (KC)-500 times Index

Dec 328.30 +.70; Est. vol. 250, Open int. 1,722

The index: High 326.47; Low J24.48; Close 326.47 +.24
CRB Index (NYFE)}—-500 times Index

Dec 214.90 +.35; Est. vol. 206; Open Int. 1,221

The index: High 214.43; Low 213.94; Close 214.20 +.26

CBT-—Chicago Board of Trade. CME —Chicago Mercan-
file Exchange. KC—Kansas City Board of Trade, NYFE -
New York Futures Exchange, a unit of the New York Stock
Exchange.

Source: Reprinted by permission of Wall Street Journal, © (November 14, 1991) Dow Jones &
Company, Inc. All Rights Reserved Worldwide.

where N is the number of stocks in the index. This market value is then scaled by
a divisor so that the index in period ¢ is

N
Zi=1 ni,tpi,t

7.2
Divisor, (7.2)

St=

The divisor represents what the stocks currently in the index would have been worth
in a base period. In the base period, the divisor is the market value of the stocks
in the index,

N
Divisorg = Z 14,004,0- (7.3)

=1

Over time, the numerator of (7.2) changes because stocks enter or leave the index
or because shares are issued or repurchased by companies. Because such changes
do not reflect a change in the value of the stocks, an adjustment to the divisor is
made on the day that a change in the index composition occurs. The new divisor
on day ¢ is just the old divisor on day ¢ adjusted by the ratio of the market value
of the new index composition on day ¢ divided by the market value of the old index
composition on day ¢,

market value new,

7.4
market value old; (7.4)

new divisor; = ( ) old divisor;.
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Both the S&P 500 and NYSE Composite indexes are value-weighted. The
S&P 500 consists of S00 common stocks, the majority of which trade on the NYSE,
although about fifty stocks trade on the American Exchange and in the OTC mar-
ket. The index was designed by Standard & Poors’ to contain stocks from a broad
variety of industry groupings. The market value for the base period of the S&P 500
is based on the average market values of the component stocks during the years
1941 through 1943. At that time, the index was set equal to 10. The NYSE Com-
posite contains all common stocks traded on the NYSE, slightly more than 1,500
in number. The base period for the NYSE index is December 31, 1965, at which
time the index was set equal to 50. As Table 7.2 shows, the values of the S&P 500
and NYSE Composite stocks indexes were 397.42 and 219.37, respectively, at the
close of trading on November 13, 1991, reflecting percentage gains of 3,874 per-
cent and 339 percent, respectively, from their base periods.

Price-Weighted Arithmetic Indexes

A price-weighted arithmetic index is like a value-weighted arithmetic index, except
that the number of shares outstanding does not play a role. The price-weighted
arithmetic index is computed as

N
iz Pit. | (7.5)
Divisor;

St:

In a price-weighted index, the divisor in the base period equals the sum of the prices
of the stocks in the base period, that is,

N
Divisorg = Zpi,g. (7.6)

=1

Like a value-weighted index, the divisor of a price-weighted index is adjusted to
reflect stock splits and stock dividends so that the index level remains unchanged
during the stock split/stock dividend process [i.e., in the manner of (7.4)]. Unlike
the value-weighted index, however, the divisor of the price-weighted index is unaf-
fected by new stock issues or share repurchases.

The best known price-weighted arithmetic index is the Dow Jones Industrial
Average (DJIA), which consists of thirty “blue-chip” stocks. In an attempt to create
an index that mimics the price movements of the DJIA, the American Exchange
created the Major Market Index (MMI). This price-weighted index contains twenty
stocks, seventeen of which are also members of the DJIA. Table 7.2 shows that the
value of the MMI at the close of trading on November 13, 1991, was 327.25.

Equal-Weighted Geometric Indexes
An equal-weighted geometric index is somewhat peculiar. To compute it, a geo-
metric average of the rates of return of the individual stocks within the index over
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a period (R, is taken, that is,

Rse= (7.7)
This return is used to update the index from the previous period,
Se = Si—1(1 + Rs). (7.8)

Currently, the only equal-weighted geometric index is the Value Line Index.
It consists of approximately 1,700 stocks. Approximately ninety percent of the
Value Line index capitalization is from shares traded on the NYSE, one percent
from AMEX, and nine percent OTC. The Value Line index and its futures contracts
are of limited interest for two reasons. First, the index weights all stocks equally
so small stocks have as much impact on the index movements as large stocks. For
an index to track the behavior of the ‘‘market,”” much greater weight should be
placed on large capitalization issues. Second, geometric averaging causes the rate
of return on the index to be less than the rate of return that would be earned by an
equal-weighted investment in each of the 1,700 stocks. As a result, price move-
ments (returns) of the Value Line index are not as strongly correlated with most
stock portfolios as are other indexes, which makes the Value Line futures contract
less useful for hedging purposes. Table 7.2 shows that the open interest of the Value
Line futures is much lower than the futures contracts on the other indexes. The
Value Line index closed at 326.47 on November 13, 1991.

Stock Index Simulations

The arithmetic versus geometric averaging of the various stock indexes warrants
further discussion, and the discussion is best facilitated through a numerical exam-
ple. Assume that there are two stocks, A and B, in the marketplace. Both are priced
at $20 per share, and both have 100 shares outstanding. Neither stock pays divi-
dends. Table 7.3 shows sample paths for the prices of each stock over a twelve-
month period. Alongside of the stock prices are: (a) a value-weighted arithmetic
index, (b) a price-weighted arithmetic index, and (¢} an equal-weighted geometric
index corresponding to these two stocks. All the indexes are created to have a base
value of 100 at time 0. The index values are computed using equations (7.2), (7.5),
and (7.8), respectively.

In Table 7.3, note two things. First, the value-weighted and price-weighted
arithmetic indexes have identical values. This is because the simulation begins with
equal investments in both stocks (the stocks’ market capitalizations and prices per
share are equal). The price movements of these indexes are perfectly positively
correlated with any equal-weighted portfolio of these two common stocks formed
at time 0. Second, the equal-weighted geometric index has a terminal value con-
siderably below the terminal values of the other two indexes, 134.16 versus 140.00.
This is the downward bias discussed earlier. The price movements of a geometric
index in general do not correspond to price movements in a stock portfolio, so
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TABLE 7.3 Simulation of value-weighted arithmetic, price-weighted arith-
metic, and equal-weighted geometric stock index values created using two
stocks.

Value- Price- Equal-
Weighted Weighted Weighted
Time Stock Stock Arithmetic Arithmetic Geometric

¢ A B Index® Index? Index*©
0 20 20 100.00 100.00 100.00
1 25 16 102.50 102.50 100.00
2 30 20 125.00 125.00 122.47
3 33 22 137.50 137.50 134.72
4 27 20 117.50 117.50 116.19
5 36 15 127.50 127.50 116.19
6 40 16 140.00 140.00 126.49
7 36 18 135.00 135.00 127.28
8 38 21 147.50 147.50 141.24
9 40 18 145.00 145.00 134.16
10 38 21 147.50 147.50 141.24
11 40 22 155.00 155.00 148.32
12 36 20 140.00 140.00 134.16

a. The value-weighted arithmetic index consists of 100 shares of Stock A and
100 shares of Stock B. At time 0, the market capitalization is 4,000, which is
adjusted to an index level of 100.

b. The price-weighted arithmetic index at time 0 equals the sum of the share
prices of Stock A and Stock B divided by the divisor.

¢. The equal-weighted geometric index equals 100 in the base period. The value
at time 1 equals the time 0 index value times the square root of the product
of one plus the rate of return on Stock A and one plus the rate of return on
Stock B.

futures contracts on a geometric index are of less value for hedging purposes than
are futures contracts on an arithmetic index.

Correlation Among Index Returns
Still more intuition about the different stock indexes can be gathered by examining
actual weekly rates of price appreciation in selected U.S. stock indexes. Table 7.4
contains the means and standard deviations of the percentage rates of price appre-
ciation of six different stock indexes. Also included in the table are estimated con-
temporaneous correlation coefficients between each pair of return series. Weekly
returns are computed using closing index levels each Wednesday during the cal-
endar year 1989. Several interesting results appear in the table.

First, note that the standard deviation of the rate of return for the arithmetic
indexes is highest for MMI—1.7453 percent per week. This result is not surprising
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TABLE 7.4 Summary statistics of weekly percentage rates of price appreci-
ation in five U.S. stock indexes during the calendar year 1989.%

Means and Standard Deviations of Index Returns

Mean Standard
Index Return Deviation

DJIA 0.4537 1.6640
MMI 0.5072 1.7453
S&P 500 0.4481 1.5825
VL 0.1809 1.3180
NYSE 0.4127 1.4916

Contemporaneous Correlations Between Pairs of Index Returns

Index MMI S&P 500 VL NYSE
DJIA 9779 9774 .8880 9750
MMI .9497 .8104 .9403
S&P 500 9137 9972
VL 9337

a. Rates of price appreciation are computed on the basis of the closing index
levels each Wednesday during 1989. Cash dividends paid on index stocks are
not considered.

considering that the MMI has the fewest stocks of any of the indexes examined.
The reduction in standard deviation from the MMI to the DJIA to the S&P 500,
and, finally, to the NYSE reflects increasingly higher degrees of diversification. The
DIJIA has 30 stocks, the S&P 500 has 500, and the NYSE has more than 1500. The
standard deviation of the return of the Value Line index reflects both diversification
and a downward bias due to the way in which the index is computed. (Recall the
geometric averaging discussed earlier in this section.)

Second, note that the correlation between pairs of return series is highest for
the S&P 500 and the NYSE indexes—0.9972. Both of these indexes are value-
weighted and are highly diversified. The rates of return of the two stock indexes
are virtually perfectly positively correlated.

Third, the returns of the MMI and the DJIA are also strongly positively cor-
related—0.9779. One would expect this to be the case given that seventeen of the
stocks in the MMI are also in the DJIA. The fact that these indexes are not well-
diversified, however, attenuates to a small degree the correlation between the
returns of these two indexes.

Finally, while the correlation among the returns of any pair of arithmetic
indexes is very high (approximately 0.93 or higher), the correlation between the
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returns of the Value Line index and any of the other indexes is relatively much
lower. The geometric averaging of the returns of the stocks in the Value Line index
portfolio and the inclusion of many small companies undermines the index’s co-
movements with other indexes.

7.3 INDEX ARBITRAGE AND PROGRAM TRADING

The cost of carry relation (3.6) from Chapter 3 applies to the relation between the
stock index futures price and the price of the underlying index under the assumption
that the dividend yield rate d is a constant, continuous proportion of the index price
level. Active stock index arbitrage ensures that

Fy = Sper=d(T-t), (7.9)

where F, and S, are the time ¢ prices of the futures contract and the underlying stock
index, respectively. Note that the derivation of this relation in Chapter 3, as it
applies to stock index arbitrage, implies that the cash dividends, as they accrue
through time, are being reinvested in the stock index portfolio.

Assuming that cash dividends are a constant, continuous proportion of the
index level may be inappropriate, particularly for a narrow-based index like the
MMI, where the small number of stocks in the index portfolio implies an obvious
discreteness and seasonality of cash dividend payments.® In such a case, an assump-
tion that the amount D, and the timing ¢, of the discrete cash dividends paid during
the futures contract life (i.e., between time ¢ and time T') are known is usually used.
Furthermore, rather than assuming that the dividends are being reinvested in the
stock index portfolio, dividends are assumed to be reinvested at the riskless rate of
interest until the futures contract expires.

Under these assumptions, stock index arbitrage involves the transactions
shown in Table 7.5a. The long position in the index portfolio provides a terminal
value equal to the uncertain index price S, plus a known aggregate dividend income
(plus accrued interest) 2, D,e"”~". The stock portfolio position is financed com-
pletely with riskless borrowings, which are repaid at time 7 at a cost Se"" 7" The
short futures position has a terminal value — (S, — F)). Since the arbitrage portfolio
involves a zero investment outlay and has no risk, the net terminal value of the
portfolio must equal zero for the market to be in equilibrium. Thus, under the
assumption of known discrete dividends, the cost-of-carry relation is

F, = S;em(T-1) _ Z D;e"(T—t:), {7.10)

i=1

*Harvey and Whaley (1992) show pronounced seasonality in the cash dividends of the S&P 100
index, which contains approximately forty percent of the market value of the S&P 500 index. In par-
ticular, during the period 1983 through 1989, dividends tend to be highest in the months of February,
May, August and November.
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TABLE 7.5a Index arbitrage transactions for establishing the relation be-
tween index futures and underlying index prices, assuming known discrete
cash dividends.

n
F = Ste'l‘(T—-t) _ Z D@,GT(T—ti)
i=1

Position Initial Value Terminal Value
Buy index portfolio -5, S*T + Z?:l D; e (T—t:)
Borrow S S — gﬁer(T—t)
Sell futures contract 0 ~ (St — F)
Net portfolio value 0 F, — SpenT=9 45" D,er(T=t)

A simple version of the cost-of-carry relation arises if one assumes dividends
and interest are paid at the end of the period corresponding to the life of the futures
contract. Table 7.5b presents arbitrage transactions for this case and shows that this
simple cost-of-carry relation is

F,=S,(1+7r*—d"), (7.11)

where r* is the rate of interest and @* is the dividend yield over the remaining life
of the futures contract.

Violations of the cost-of-carry relation (7.9), (7.10), or (7.11) signal profitable
index arbitrage opportunities. If, for example, the observed futures price is above
the theoretical futures price as implied by the right-hand side of (7.9), (7.10), or
(7.11), arbitrageurs sell futures and buy the underlying stocks, driving the price of
the futures down and the prices of stocks up. The arbitrage becomes unprofitable
when the futures price reflects the cost of carrying the underlying stocks, that is,
the interest cost less the cash dividends.

Unlike typical basis arbitrage, the underlying commodity is a precisely
weighted portfolio of common stocks, rather than a single asset. For example,
engaging in index arbitrage with the S&P 500 index requires a mechanism for buy-
ing or selling quickly and simultaneously all 500 stocks in the S&P 500 index
portfolio. Since the simultaneous purchase or sale of the stocks in a precisely
weighted and timely fashion is beyond human capability, computers and computer
programs are usually used to place transaction orders as well as to assist in the
execution of those orders. For this reason, trading of portfolios of stocks is called
program trading, although program trades can also be done by manually preparing
order tickets for each stock. NYSE statistics define a program trade as any order
for a portfolio of 15 or more stocks.
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TABLE 7.5b Index arbitrage transactions for establishing the relation be-
tween index futures and underlying index prices, assuming dividends and in-
terest are paid at maturity.

F, =81+ —d")

Position Initial Value Terminal Value
Buy index portfolio -5 Sy +d*S,
Borrow St St _St..(l + 'I‘*)
Sell futures contract 0 —(St — F})
Net portfolio value 0 E,—-S(1+r—d)

Treasury Bill Substitute

Technically speaking, one thinks of “index arbitrage” as being conducted by pro-
fessional index arbitrageurs who establish offsetting positions in the manner shown
in Table 7.5a. However, deviations from the cost of carry relation also offer oppor-
tunities for investors, such as pension funds, to structure an investment with index
futures that offers a higher return than an investment of equivalent risk in another
market. For example, if the futures price is high relative to the cost-of-carry equi-
librium, fund managers can generate a riskless investment with a rate of return
higher than the return on a Treasury bill of a maturity comparable to the index
futures by selling index futures and buying the index portfolio. Such a strategy is
called a Treasury bill substitute.

To understand how this strategy works, suppose that the current S&P 500
index level is 348.60 and that the nearby S&P 500 futures contract has a price of
354.50 and a time to expiration of 73 days. Suppose also that the future value of
the S&P 500 dividends over the next 73 days is $2.79 and that a 73-day Treasury
bill will provide a rate of return of 1.6 percent over its life. Using (7.11), the implied
riskless rate of interest, r*, on a 73-day investment involving selling the index
futures and buying the stock index portfolio is determined by solving

354.50 = 348.60(1 + r*) — 2.79.

The interest rate from the Treasury bill substitute strategy, r*, is 2.5 percent. In
other words, a pension fund that might ordinarily invest $3,486,000 in T-bills to
earn 1.6 percent over 73 days could invest the same amount of money in a Treasury
bill substitute to earn 2.5 percent over 73 days. To do so, the $3,486,000 is invested
in the index portfolio (i.e., 10,000 units of the index are purchased) and twenty
index futures contracts are sold (recall each index futures is 500 times the index
value). Over the 73-day period, the index portfolio will generate $27,900 in cash
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dividends, and the index level will appreciate by 5.90 relative to the futures
(because the futures price and index level converge at the end of 73 days), for a
total price appreciation of $59,000. The overall rate of return on the Treasury bill
substitute position is (27,900 + 59,000)/3,486,000 or 2.5 percent.

Stock Replacement

A second example of how index futures may be used to generate a higher return
than an investment with equivalent risk is a stock replacement strategy. When the
actual futures price is below the theoretical futures price, an arbitrageur enacts a
short arbitrage—the short sale of stocks and the purchase of futures contracts. But
stock portfolio managers, too, can profit from such an opportunity by selling their
stock portfolios and using the proceeds to buy index futures and Treasury bills, that
is, by engaging in stock replacement.

To illustrate a stock replacement strategy, consider the previous example in
which the current S&P 500 index level is 348.60, the time to expiration of the
nearby S&P 500 futures contract is 73 days, the rate of return on a 73-day T-bill
over the next 73 days is 1.60 percent, and the future value of the cash dividends
on the S&P 500 over the next 73 days is $2.79. However, this time, assume the
nearby S&P 500 futures price is $350.25. On the basis of these figures, the theo-
retical futures price is

F = 348.60(1.0160) — 2.79 = 351.39.

Since the observed futures price, $350.25, is less than its theoretical value, a stock
replacement strategy can be used to generate a rate of return that will exceed the
rate of return on a direct investment in the S&P 500 index portfolio without assum-
ing more risk. A portfolio manager with $50,000,000 in the S&P 500 index port-
folio will have a portfolio value of

- 50,000, 000
VS&P 500, T = *“328_60—
= 143, 430.87Sy + 400, 172

) (S + 2.79)

in 73 days. On the other hand, if he liquidates his S&P 500 stock portfolio and
buys T-bills and the nearby S&P 500 futures contract, the portfolio value for the
stock replacement strategy (SRS) will be

~ 50, 000, 000
VersT =\ “agi60

= 143, 430.87S7 — 50, 236, 662 + 50, 800, 000

) (S — 350.25) + 50, 000, 000(1.016)

= 143, 430.8751 + 563, 338.
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Note that the stock replacement strategy is certain to have a terminal value
$163,166 higher than the stock portfolio strategy. The fact that this incremental
value is certain reflects the fact that, while each strategy’s terminal value is uncer-
tain, both strategies have equal risk. If the observed futures price is below its the-
oretical level, however, the stock replacement strategy will dominate.

Practical Considerations in Index Arbitrage

In practice, there are several reasons why deviations from the cost of carry relation
do not ensure that arbitrage profits can be earned. First, and most important, are
the transaction costs involved in trading the underlying index stocks. These include
the commissions and the market impact costs of buying stocks at the ask price or
selling stocks at the bid price. Procedures for trading portfolios of stock have
improved dramatically in recent years and frequently involve the use of the NYSE
computer entry system, DOT (Designated Order Turnaround). Nevertheless, these
costs can be substantial, particularly if a number of portfolio transactions are hitting
the market at the same time. Stock index arbitrageurs estimate the total round-trip
transaction costs to be on the order of 0.5 to 0.75 percent of the underlying portfolio
value.®

Second, the dividends in the cost-of-carry relation are assumed to be known
with certainty. In general, this assumption is reasonable since firms tend to pay
regular, constant, or constantly-increasing quarterly dividends. Any uncertainty
about the anticipated dividend payments on the underlying stocks, however, intro-
duces uncertainty about the return of the index arbitrage and can therefore limit
arbitrage somewhat.

Third, certain types of arbitrage may involve risk. In some cases, arbitragers
do not trade all the underlying stocks in the index. Instead, they buy or sell a rep-
resentative basket of stocks because of the difficulty and the cost associated with
transacting, say, all 500 of the stocks in the S&P 500 index. If the representative
basket fails to move exactly like the underlying index, the arbitrage is risky.

Fourth, certain rules and regulations can impede arbitrage. For example, *‘cir-
cuit breakers” are now used to suspend index futures trading when the DJIA moves
by more than a pre-specified amount in a given trading day. On such days, apparent
arbitrage opportunities may be only illusory in the sense that the futures leg of the
arbitrage may not be executable. Another example of an instance where a rule
impedes arbitrage is when the arbitrage requires stocks to be sold and futures to be
purchased. Since the index portfolio must be sold short, the short-sale rule comes
into play. Under the short-sale rule, a stock is required to uptick before it may be
sold short. When an entire portfolio of stocks must be sold, the time delay in wait-
ing for an uptick in each stock makes the short arbitrage difficult to implement, so
the futures price may tend to be less than or equal to its theoretical value. It is
worthwhile to note that stock sales conducted by portfolio managers using stock

“See Stoll and Whaley (1987, p. 18).
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replacement strategies, however, are not subject to the uptick rule, and this will
tend to limit the amount by which the futures price will fall below its theoretical
price.’

Fifth, arbitrage is sometimes limited by the lack of capital. Brokerage firms
may be limited by net capital requirement rules and the availability of higher yield-
ing alternative fund uses. Moreover, many institutional investors may not be author-
ized to engage in index arbitrage.

The efficacy of the index arbitrage process has been examined in a number
of theoretical and empirical papers.® In general, these papers find that observed
futures prices can deviate from the theoretical futures price specified by arbitrage
conditions by more than normal transaction costs. This is particularly the case for
deviations of the futures price below the theoretical price. Such deviations may be
difficult to arbitrage though because of the short sale restrictions and because of
the lack of a sufficient number of institutions willing to engage in stock replacement
strategies.

7.4 INTRADAY BEHAVIOR OF RETURNS

In perfectly efficient and continuous futures and stock markets absent transaction
costs, riskless arbitrage profit opportunities should not appear so the cost-of-carry
relation (7.9),

Ft — Ste('!‘—d.){T——t)’

should be satisfied at every instant ¢ during the futures contract life. If such is the
case, the instantaneous rate of price appreciation in the stock index equals the net
cost-of-carry of the stock portfolio plus the instantaneous relative price change of
the futures contract. To see this, take the natural logarithm of (7.9) at time ¢ and
at time ¢t — 1:

InS; = —(r —d){T' — t) + InFy, (7.12)

"In August 1990, the NYSE implemented a rule requiring a downtick on each stock in an index
arbitrage program purchase if the DJIA rose by 50 points or more and an uptick on each stock in an
index arbitrage program sale (short or from a long position) if the DJIA declined by 50 points. This
rule is counter productive because it impedes index arbitrage.

8Cornell and French (1983), Figlewski (1984a), Gastineau and Madansky (1983), Modest and Sun-
daresan (1983), Peters (1985), Stoll and Whaley (1986b), MacKinlay and Ramaswamy (1988), Kleidon
(1991), Kleidon and Whaley (1991), and Miller, Muthuswamy, and Whaley (1991) examine the arbi-
trage process and consider possible explanations for observed deviations from theoretical prices. Other
papers, notably Garcia and Gould (1987), Gould (1988), and Brennan and Schwartz (1990), analyze
strategies for trading on mispricing.
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and

lnSt_l — —(T“d)(T*—t+1)+lIlFt_1, (713)

and then subtract (7.13) from (7.12),
Rst = (r —d) + Rpg, (7.14)

where R;, = In(S/S,_,) and R, = In(F/F,_)).

Several implications follow from (7.14) under the assumptions that the short-
term interest rate and the dividend yield rate of the stock index are constant and
that the index futures and stock markets are efficient and continuous:

a. The expected rate of price appreciation on the stock index portfolio E(R;,)
equals the net cost of carry (r — d) plus the expected rate of return on
the futures contract E(RE,).

b. The standard deviation of the rate of return on the futures contract equals
the standard deviation of the rate of return of the underlying stock index.

¢. The contemporaneous rates of return of the futures contract and the under-
lying stock portfolio are perfectly positively correlated.

d. The rates of return of the futures contract and of the underlying stock index
portfolio are serially uncorrelated.’

e. The noncontemporaneous rates of return of the futures contract and the
underlying stock portfolio are uncorrelated.

Naturally, all of the above implications are based on the assumption that the
cost-of-carry relation (7.9) holds at all points in time. It has been shown, however,
that (7.9) does not hold exactly; indeed, one of the puzzles in stock index futures
is the frequency with which deviations from the cost-of-carry relation are observed.
Stoll and Whaley (1986b, Table 23A), for example, report frequent violations of
the cost-of-carry relation in excess of transaction costs using hourly S&P 500 index
and index futures data during the period April 1982 through December 1985. The
frequency of violation is nearly eighty percent for the June 1982 futures contract.
For more recent contract maturities, however, the frequency falls below fifteen per-
cent. MacKinlay and Ramaswamy (1988, Table 6) report similar results for the S&P
500 futures contracts expiring in September 1983 through June 1987. Using fifteen-
minute price data, they find that the cost-of-carry relation is violated 14.4 percent
of the time on average.

Violations of the cost-of-carry relation may appear for a variety of reasons.
Some, like transaction costs, were discussed in the last section. The presence of

*Technically speaking, more than an assumption of market efficiency is needed to ensure serially
uncorrelated rates of return. It must also be the case that the expected rates of return of the futures and
stock index are constant. [See Fama (1976, pp. 149~151).] Such an assumption is reasonable since the
rate of return series that we will examine below are intraday.



114 Part Two Futures

transaction costs tends to introduce noise in the rate of return relation (7.14). An
important reason not mentioned in the last section is the infrequent trading of stocks
within the index. Markets for individual stocks are not perfectly continuous. Con-
sequently, stock index prices, which are averages of the last transaction prices of
component stocks, lag actual developments in the stock market. Fisher (1966)
describes this phenomenon. Cohen, et al. (1986, Ch. 6) give a more general dis-
cussion of serial correlation of stock index returns in terms of delays in the price
adjustment of securities. Lo and MacKinlay (1988) model the effects of infrequent
trading on index returns under certain restrictive assumptions. Assuming that the
index futures prices instantaneously reflect new information, observed futures
returns should be expected to lead observed stock index returns because of infre-
quent trading, even though there is no economic significance to this behavior
whatsoever.

Stoll and Whaley (1990b) use five-minute, intraday rate of return data for the
S&P 500 index and the nearby S&P 500 futures contracts to (a) model and purge
the effects of infrequent trading in the stock index portfolio, and (b) assess the
degree of simultaneity between returns in the index futures and stock markets. The
effects of infrequent trading are shown in Table 7.6. Note that, while the S&P 500
futures contract returns have virtually no serial correlation, the returns of the S&P
500 index portfolio are strongly positively serially correlated. The first-order serial
correlation in the S&P 500 index returns exceeds 0.5. Because not all stocks within
the S&P 500 index portfolio trade in every five-minute interval, a market movement
within this interval may not be recorded in the price of less actively traded stocks
until some time later when the stock finally trades. The effect of this phenomenon
is positive serial correlation in the portfolio return series. The serial correlation does
not disappear until lag 4 or 5 using five-minute returns.

The effects of infrequent trading on observed stock index returns are modeled
theoretically and estimated empirically in Stoll and Whaley (1990b). The residuals
(return innovations) from the estimated model are examined to assess the degree
of any remaining positive serial correlation. The last pair of columns in Table 7.6
show these results. With the effects of infrequent trading modeled and purged, the
return innovations of the S&P 500 index are virtually white noise. None of the
estimated serial correlation coefficients exceed 0.02 in absolute magnitude.

Finally, to assess the degree of simultaneity between the S&P 500 index
futures and stock market returns, the return innovations of the S&P 500 index are
regressed on lag, contemporaneous, and lead futures returns,

3
€5t = Q + Z BrREt—k + us. (7.15)
k=—3

The regression results are shown in Table 7.7. In addition, for purposes of com-
parison, the regression results of observed S&P 500 index returns regressed on lag,
contemporaneous, and lead futures returns are also reported.

The return innovation regression results in Table 7.7 indicate that the domi-
nant relation between the two markets is contemporaneous. The estimated coeffi-
cient of the contemporaneous futures return, ﬁo, in the return innovation regression
is 0.1338, higher than any of the leading or lagged coefficients. The estimated coef-
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TABLE 7.6 Estimated serial correlation coefficients of observed returns of the S&P 500
index (R%) and the S&P 500 index futures contract (R%) for the 1249-day period April
21, 1982, through March 31, 1987¢.

Pi(RE o RS, i) pe(ReEy, Rey ) pi(€s,t, €5,t—k)
Lag No. of No. of
k  obs.t P t(r)* pr t(pr)*  obs.© pe )
1 86,952 0.5117 175.61 0.0229 6.77 84,454 0.0071 2.06
2 85,703 0.2654 80.60 0.0265 7.76 83,205 0.0053 1.52
3 84,454 0.1312 38.46 0.0015 0.45 81,956 0.0068 1.95
4 83,205 0.0759 21.96 -0.0137 -3.96 80,707 0.0050 1.41
5 81,956 0.0460 13.17 -0.0222 -6.36 79,458 0.0052 1.48
6 80,707 0.0199 5.64 -0.0108 -3.06 78,209 -0.0042 -1.18
7 79,458 0.0077 2.18 -0.0087 -2.46 76,960 -0.0119 -3.30
8 78,209 0.0154 4.32 -0.0015 -0.42 75,711 0.0017 0.46
9 76,960 0.0195 5.42 0.0039 1.07 74,462 -0.0005 -0.15
10 75,711 0.0110 3.04 —-0.0030 -0.83 73,213 —-0.0082 -2.22
11 74,462 0.0018 0.49 0.0047 1.29 71,964 -0.0163 -4.37
12 73,213 0.0019 0.51 0.0002 0.07 70,715 -0.0067 ~1.77

a. The numbers in this table are taken from Stoll and Whaley (1990, Tables 1 and 3).

b. The number of observations used in the computation of the serial correlation coefficient.
Note that as the lag k is incremented by one, the number of observations lost equals the
number of days in the sample period. This reflects the loss of one return each day of the
sample. The serial correlation coefficient estimates are, therefore, not contaminated by
using returns from adjacent days.

c. The estimated lag k serial correlation coefficient across all five-minute returns in all
days of the period, excluding overnight returns and the first two returns each trading
day.

d. The t-ratio corresponding to the null hypothesis that pi equals zero.

e. The number of observations drops by 2,498 as a result of fitting an ARM A(2,3)
regression model to observed returns.

ficient of the lag one futures return, B., is 0.1015, showing that there is a tendency
for the futures market to lead the stock market. All other coefficients in the return
innovation regression are indistinguishably different from zero in an economic
sense. When stock index returns are used as the dependent variable, the leading
effect of the futures market appears considerably longer, but most of this is illusion
attributable to infrequent trading in the stock market. Overall, the evidence supports
the notion that futures markets tend to play a price discovery role in the
marketplace.
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TABLE 7.7 Parameter estimates from regressions of S&P 500 index re-
turns/return innovations on lag, contemporaneous, and lead nearby S&P 500
futures returns for the 1249-day period April 21, 1982 through March 31, 1987.

3
Returns: Rg; = o+ Z BiRFt—k + tt

k=-3

Return innovations: €g; = a + Z BrRE—k + Uy

k=—-3

Returns

No. of Obs. 78,209

R? 0.4730

Parameter
estimate? t-ratio®
& -0.0001 -1.08
B3 -0.0077 ~6.57
B_a —0.0158 ~13.48
8.4 0.0213 18.10
Bo 0.1690 142.93
e 0.2032 171.14
B 0.1330 111.45
B3 0.0798 66.50

Returns Innovations

Parameter
estimate®

-0.0002
-0.0094
-0.0153
0.0194
0.1338
0.1015

0.0153
0.0059

78,209
0.2132
t-ratio®
~-1.73
-8.04
-13.04
16.54
113.50
85.72

12.87
4.92

a. The numbers in this table are taken from Stoll and Whaley (1990b, Table

5).

b. Parameter estimates obtained from times series regression across all five-
minute returns in all days of the period, excluding overnight returns and the

first two returns each trading day.

c. The t-ratio corresponding to the null hypothesis that the respective coeffi-

cient equals zero.

7.5 HEDGING MARKET RISK

Stock index futures contracts are useful in a variety of risk management situations.
In this section, we examine an important one—hedging market risk. Assume you
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are responsible for managing a $50,000,000 stock portfolio. This portfolio has a
systematic risk coefficient (8,) of 1.20 relative to the S&P 500 index and a total
risk (o) of forty percent on an annualized basis. The future value of the promised
dividends on this stock portfolio over the next three months is $400,000, or 0.8
percent of the current portfolio value. At the same time, the S&P 500 stock index
portfolio has a total risk level (o) of twenty-five percent annually and promises
cash dividends over the next three months amounting to one percent of the current
index value. The current S&P 500 index value is 373.63 and the price of the nearby,
three-month S&P 500 futures contract is 375.50. A three-month T-bill promises a
1.5 percent rate of return. This illustration assumes the cost of carry relation (7.11)
holds, that is, 375.50 = 373.63(1 + .015 — .01).

Suppose that your research director has informed you that the market (as
reflected by the S&P 500) will drop by sixteen percent over the next three months.
You have a great deal of confidence in his prediction so you decide to hedge the
market risk of your portfolio. One option that you have is to liquidate the stock
portfolio and buy T-bills, however this strategy would not allow you to capture the
non-market returns that your portfolio of “winners’ is expected to earn over the
next three months. Selling S&P 500 futures contracts, on the other hand, allows
you to hedge the market risk of the stock portfolio without selling your stocks.

Forming the Hedge Portfolio

The optimal number of futures contracts to sell in this instance can be obtained
indirectly using the stock portfolio beta. 8, = 1.20 implies that the stock portfolio
is expected to earn 1.2 times the gain/loss of the S&P 500 index per dollar invested.
The stock portfolio beta is defined as

ﬁp = COV(RP: RS)

Var(Rg)

where R, and R; are the random rates of return on the stock portfolio and the market
index (in this case, the S&P 500), respectively. To understand the relation between
the stock portfolio beta and the optimal hedge ratio, we need to establish the rela-
tion between the futures and stock index returns over the hedge period, which is
equal to the futures contract life in this illustration. Over the hedge period, the stock
index return is

~ - S
RS=§LSTQ}

and the futures return is

Rp = T to,
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Using (7.11) to substitute for F,,

B = Sp — So(1+7r* — d*)
F So(1+ 7 — d¥)
_ RS _ r* —d*
T 14 —dt 147 —d*

Rearranging to isolate R, we get
fzs = f{p(l +r* - d*) +r* —d*.

Substituting for the stock index return, the expression for the stock portfolio beta
becomes

Cov[R,, Rp(1 +1* —d*) +r* — d*]
Var[Rp(1 + r* — d*) + r* — d*]
_ Cov(R,, RF)
~ Var(Rp)(1 + 7 —d*)’

Bp =

The remaining step in showing the relation between the stock portfolio beta
and the hedge ratio involves subst:tutmg the relations between returns and price
changes. These relations are R = A »/Po and R, = AFJFO Hence, the stock’s rate
of return beta B, is

Cov(A,/po, Ar/Fp)
Var(Ap/Fo)(1 + r* — d*)
_ p—glﬁ‘a COV(AP, AF)

FlgVar(Ap)(l +r* — d*)

Cov(Ap, AF)FO
Var(Ap)(l + r* — d*)

ﬁp:

Using the definition of the optimal hedge ratio given in Chapter 4 and assuming
the cost-of-carry relation, (4.9), B, can be written as

50

Bp =—h"—
Po

Finally, the initial investment in the stock portfolio and the cash index with respect
to which B, is calculated are the same, so p, = S,. This implies that

By = —h*.
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In other words, the optimal hedge ratio is the negative of the stock portfolio beta.
In the case of the example, the optimal hedge ratio is

h* = —1.2.

The optimal number of futures contracts to sell is therefore the stock portfolio beta
times the number of units of the stock portfolio,

1 {50, 000, 000

373.63(500)] = 32117

Assessing Hedging Effectiveness

The information indicates that the variance of the unhedged stock portfolio return
is .40° = .16. If the stock portfolio investment is one dollar, the price change
variance of the unhedged portfolio is also .16. In Chapter 4, we learned that hedging
effectiveness is measured by the adjusted R-squared of the regression of cash price
changes on futures price changes. The R-squared, in turn, is closely related to the
correlation of cash price changes with futures price changes (i.e., R* = p; ). To
find the effectiveness of the S&P 500 hedge in our illustration, therefore, we focus
on the correlation coefficient between the stock portfolio price changes and the
futures price changes. Over the life of the futures contract, the futures and stock
index price changes are perfectly correlated and the standard deviation of the
futures price change equals the standard deviation of the stock index price change,
so the correlation coefficient may be written

Op,8
O"pO'S

Pp,F = Pp,§ =
Also, we know that 8, = 0, s/0%, sO

ags
Pp,F = Bp—.
Op

On the basis of the given values (8, = 1.20, oy = 0.25 and ¢, = 040); the
correlation coefficient, p, r, is 0.75. The R-squared is thus 0.5625, and the propor-
tion of the stock portfolio return variance that is unrelated to the return variance
of index futures is 1 — .5625 or 0.4375. The remaining variance of the rate of
price change on the hedged portfolio is therefore

ol =0.4375(.16) = .07.

Decomposing the Hedge Portfolio Return

Suppose that the S&P 500 index drops by twenty percent over the three-month
period after the hedge portfolio is formed. Over the same time, your stock portfolio
drops to a value of $40,000,000, excluding dividends. Find the overall rate of return
on your hedged portfolio, and decompose the overall return into its riskless rate



120 Part Two Futures

TABLE 7.8 Hedging market risk of a stock portfolio that has a 8 = 1.2 and a three-month
dividend yield of 0.8 percent.

Cash Market December Futures

Value of Value of Value of
Index Stock Futures Futures Hedged
Level Portfolio Price Position® Portfolio

Sept 15 373.63 50,000,000 375.50 -60,300,000

Dec 15 298.90 40,400,000° 298.90 ~48,000,000
Gain -9,600,000 12,300,000 2,700,000
Return(%) -20.00 -19.20¢ -20.40 -24.60° 5.40¢

a. The optimal hedge involves selling 321.17 futures contracts, with each contract valued
at 500 times the index futures price.

b. Includes dividends of $400,000.
c. Dollar gain divided by the initial stock portfolio value, $50,000,000.

and abnormal return components. Table 7.8 provides such a decomposition for a
hedge established on September 15 and liquidated on December 15, when the
futures contract is assumed to expire.

The overall rate of return on the unhedged portfolio can be measured easily
by focusing on the price appreciation and dividend yield components of total return,
that is,

40, 000, 000 400, 000
- y LY ) = —~19.20%.
By (50,000,000 1) + (50,000, 000) 0%

To find the hedged portfolio return, we must also compute the rate of return on the
futures. At the outset, the S&P 500 index level was 373.63 and the three-month
S&P 500 futures price was 375.50. If the S&P 500 index level fell by twenty per-
cent over the three-month period, the new index level and futures price (recall that
futures had three months to expiration when they were sold) are 373.63(.80) or
298.90. The rate of return on the index futures over the period was therefore

298.90

— j— _— Y
= 375 50 1 20.40%.

Rp
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Thus, the total return of the hedged portfolio over the three-month period is

Rh:-Rp"Fh(ﬁ]-) RF
So

= —0.1920 — 1.2 (_"__> (—0.2040)
= 5.40%.

The alternative to hedging in this example is to liquidate the stock portfolio and
buy three-month T-bills. Such an action would have produced a 1.5 percent return,
given our assumption that the T-bill rate is 1.5 percent. The riskless rate and abnor-
mal performance components of the hedge portfolio return in this illustration are
therefore 1.5 percent and 3.9 percent, respectively. In other words, the 3.9 percent
return was the abnormal or extra-market rate of return arising from the fact that
the portfolio of “winners” outperformed the market on a risk-adjusted basis.

The hedged portfolio would also have earned 1.5 percent if the stock portfolio
had declined exactly according to its beta of 1.20, without an abnormal return. In
that case, the return would have been

Ry =1" + (R — )8, = 0.015 + (—0.19 — 0.015)1.2 = —0.231,

where R, is the return on the stock index including the dividends, or —0.19. That
implies a value for the stock portfolio, including dividends, of $38,450,000, instead
of the value of $40,400,000 shown in Table 7.8. The values in Table 7.8 for the
cash index and the futures market would remain the same. The dollar gain on the
hedged portfolio becomes $750,000, and the hedged return becomes 1.5 percent,
exactly the same as the riskless rate.

It is worth noting that the hedged stock portfolio has basis risk because the
portfolio’s return is not perfectly correlated with the index futures return. If, for
example, the stock portfolio had a negative abnormal return, the hedged portfolio
would have earned less than the riskless rate.

7.6 SUMMARY

In this chapter, stock index futures contracts and the composition of stock indexes
underlying futures contracts are described. The cost-of-carry relation for stock
indexes is derived, and the role of index arbitrage in maintaining the link between
stock index futures and cash prices is explained. Evidence on the short-run behavior
of the returns of index futures and of the cash index is presented. Finally, the use
of stock index futures to hedge the market risk in a stock or a portfolio of stocks
is illustrated in detail.



