No-arbitrage price relations

Options

Four markets operate simultaneously.

Only in US because of two regulatory bodies, SEC and CFTC.

In all other major financial centers, one regulatory authority.

□ <u>Purpose</u>:

- Develop no-arbitrage price relations for options.
- Key results are:
 - put-call parity relations
 - □ inter-market price relations

□ <u>Assumptions</u>:

- Individuals are rational.
 - □ Prefer more wealth to less wealth.
 - □ No costless arbitrage opportunities.
- Markets are frictionless.

□ <u>Assumptions</u>:

- Futures, option, and futures option contracts expire at same time *T*.
- Individuals can borrow and lend at constant and continuous rate *r*.
- Non-interest carry costs/benefits rate *i* of asset is constant and continuous.

□ <u>Terminology</u>:

- *Option* provides right to buy or sell underlying asset at specified price within certain period.
 - □ *Call option* is right to buy.
 - □ *Put option* is right to sell.

□ <u>Terminology</u>:

- Specified price at which asset is bought or sold is called *exercise price* or *strike price*.
- Two styles of options are traded:
 - □ *European-style*: exercised only at expiration
 - □ *American-style*: exercised at any time prior to expiration
- Focus only on European-style options.
 - American-style results are tractable but more complicated.

□ <u>Terminology</u>:

- if S > X,
 - □ call is *in-the-money*
 - □ put is *out-of-the-money*
- if *S*<*X*,
 - □ call is *out-of-the-money*
 - □ put is *in-the-money*
- if S=X,
 - □ call and put are *at-the-money*

- □ <u>Notation</u>:
 - $S(\tilde{S}_T) = \text{current (random terminal) asset price}$
 - $F(\tilde{F}_T)$ = current (random terminal) futures price
 - c = European-style call price
 - p = European-style put price
 - X = exercise price of price
 - T = time to expiration of option

Put-call parity for options on assets with continuous income rate *i*.

$$c - p = Se^{-iT} - Xe^{-rT}$$

Put-call parity for options on assets with discrete income payment *I* at time *t*.

$$c - p = S - I_t e^{-rt} - X e^{-rT}$$

□ Asset options

Form arbitrage portfolio using asset and options.

		Termina	al value
Action	Initial value	$\tilde{S}_{_{T}} \leq X$	$\tilde{S}_T > X$
Buy asset	$-Se^{-iT}$	$ ilde{S}_{T}$	$ ilde{S}_{T}$
Buy European put	-p	$X - \tilde{S}_T$	0
Sell European call	С	0	$-(\tilde{S}_T - X)$
Sell T-bills (borrow)	Xe^{-rT}	-X	- X
Net value	$-Se^{-iT} - p + c + Xe^{-rT}$	0	0

- □ Asset options
 - Buy e^{-iT} units of asset.

		Termina	al value
Action	Initial value	$\tilde{S}_{_{T}} \leq X$	$\tilde{S}_T > X$
Buy asset	$-Se^{-iT}$	$ ilde{S}_{_T}$	${ ilde S}_T$

Asset options

Buy one put option.

		Terminal value			
Action	Initial value	$\tilde{S}_{_{T}} \leq X$	$\tilde{S}_T > X$		
Buy asset	$-Se^{-iT}$	$ ilde{S}_{\scriptscriptstyle T}$	$ ilde{S}_{T}$		
Buy European put	- <i>p</i>	$X - \tilde{S}_T$	0		

Asset options

Sell one call option.

		Terminal value		
Action	Initial value	$\tilde{S}_{_{T}} \leq X$	$\tilde{S}_T > X$	
Buy asset	$-Se^{-iT}$	$ ilde{S}_{_T}$	$ ilde{S}_{_T}$	
Buy European put	- <i>p</i>	$X - \tilde{S}_T$	0	
Sell European call	С	0	$-(\tilde{S}_T - X)$	

- □ Asset options
 - Borrow e^{-rT} units of risk-free discount bonds with face value X.

Action	Initial value	$\tilde{S}_{_{T}} \leq X$	$\tilde{S}_T > X$
Buy asset	$-Se^{-iT}$	$ ilde{S}_{_T}$	$ ilde{S}_{\scriptscriptstyle T}$
Buy European put	-p	$X - \tilde{S}_T$	0
Sell European call	С	0	$-(\tilde{S}_T - X)$
Sell T-bills (borrow)	Xe^{-rT}	-X	-X

Terminal value

□ Asset options

• Compute net terminal values.

		<u> </u>	al value
Action	Initial value	$\tilde{S}_{_{T}} \leq X$	$\tilde{S}_T > X$
Buy asset	$-Se^{-iT}$	\tilde{S}_{T}	${ ilde S}_T$
Buy European put	-p	$X - \tilde{S}_T$	0
Sell European call	С	0	$-(\tilde{S}_T - X)$
Sell T-bills (borrow)	Xe^{-rT}	-X	- X
Net value	$-Se^{-iT}-p+c+Xe^{-rT}$	0	0

□ Asset options

• Compute net terminal values.

		Termina	al value
Action	Initial value	$\tilde{S}_{_{T}} \leq X$	$\tilde{S}_T > X$
Buy asset	$-Se^{-iT}$	$ ilde{S}_{_{T}}$	$ ilde{S}_{\scriptscriptstyle T}$
Buy European put	-p	$X - \tilde{S}_T$	0
Sell European call	С	0	$-(\tilde{S}_T - X)$
Sell T-bills (borrow)	Xe^{-rT}	- X	- X
Net value	$-Se^{-iT} - p + c + Xe^{-rT}$	0	0

Since portfolio is guaranteed to have 0 terminal value, initial Value <u>must</u> be 0; other costless arbitrage profits are possible.

□ Asset options

• Compute net terminal values.

		Termina	al value
Action	Initial value	$\tilde{S}_{_{T}} \leq X$	$\tilde{S}_T > X$
Buy asset	$-Se^{-iT}$	${ ilde S}_T$	$ ilde{S}_{\scriptscriptstyle T}$
Buy European put	-p	$X - \tilde{S}_T$	0
Sell European call	С	0	$-(\tilde{S}_T - X)$
Sell T-bills (borrow)	Xe^{-rT}	-X	- X
Net value	$-Se^{-iT} - p + c + Xe^{-rT}$	0	0

Setting initial value to 0, market is in equilibrium where

 $c - p = Se^{-iT} - Xe^{-rT}$

□ <u>Illustration</u>:

- Consider call and put with:
 - \square exercise price of 70
 - □ time to expiration of 90 days
 - □ prices of 5.00 and 4.50
- Assume:
 - \square asset price is 70
 - □ income rate is 1%
 - □ interest rate is 3%

□ <u>Illustration</u>:

$$5.00 - 4.50 = .50 > 70e^{-.01(90/365)} - 70e^{-.03(90/365)} = .34$$

0.16 costless arbitrage opportunity available.

□ <u>Illustration</u>:

- Implies any or all of:
 - □ Call is overpriced.
 - □ Put is underpriced.
 - □ Asset is underpriced.
- Arbitrage portfolio must account for all possibilities (risks).

□ <u>Illustration</u>:

		Terminal value		
Action	Initial value	$\tilde{S}_T \leq 70$	$\tilde{S}_T > 70$	
Buy asset	$-70e^{01(90/365)} = -69.83$	\tilde{S}_{T}	\tilde{S}_{T}	
Buy European put	-4.50	$70 - \tilde{S}_T$	0	
Sell European call	5.00	0	$-(\tilde{S}_{T}-70)$	
Sell T-bills (borrow)	$70e^{03(90/365)}$	-70	-70	
Net value	.16	0	0	

□ <u>Illustration</u>: Put-call parity.xlsx

	А	В	С	D	E	F	G
1	EUROPEAN-STYLE OPTIONS ON ASSETS WITH CONTINUOUS INCOME RATE						
2	ASSET			COSTLE	ESS ARBITRA	GE PORTFOL	IO
3	Price (S)	70.00				Termin	al value
4	Income rate (i)	1.00%		Action	Initial value	ST<=70	ST > 70
5				Buy asset	-69.828	ST	ST
6	OPTIONS			Buy put	-4.500	70-ST	0
7	Exercise price	70		Sell call	5.000	0	-(ST-70)
8	Days to expiration	90		Sell riskless bonds	69.484	-70	-70
9	Time to expiration (T)	0.24658		Net value	0.156	0	0
10	Call price (c)	5.000					
11	Put price (p)	4.500					
12							
13	INTEREST RATE (r)	3.00%					
14							
15	Sexp(-iT)	69.828					
16	Xexp(-rT)	69.484					
17							
18	PUT-CALL PARITY						
19	Deviation	0.156					
20	Costless arbitrage profit	0.156					

□ <u>Illustration</u>:

- Consider European-style call and put with:
 - \square exercise price of 70
 - □ time to expiration of 90 days
 - \square prices of 5.00 and 4.50
- Assume:
 - \square asset price is 70
 - □ income payment is 2.00 in 20 days
 - □ interest rate is 3%

□ <u>Illustration</u>: Put-call parity.xlsx

4	А	B C	D	E	F	G
1	EUROPEAN-ST	YLE OPTIONS O	N ASSETS WITH DIS	CRETE INCOM	E PAYMENT	
2	ASSET		COSTLE	ESS ARBITRAG	E PORTFOLI	0
3	Price (S)	70.00		_	Termin	al value
4	Income payment (I)	2.00	Action	Initial value	ST<=70	ST > 70
5	Days to income payment	20	Buy asset	-70.000	ST	ST
6	Time to income payment (t)	0.0548	Receive dividend	1.997		
7			Buy put	-4.500	70-ST	0
8	OPTIONS		Sell call	5.000	0	-(ST-70)
9	Exercise price	70	Sell riskless bonds	69.484	-70	-70
10	Days to expiration	90	Net value	1.981	0	0
11	Years to expiration (T)	0.2466				
12	Call price (c)	5.000				
13	Put price (p)	4.500				
14						
15	INTEREST RATE (r)	3.00%				
16						
17	PUT-CALL PARITY					
18	Deviation	1.981				
19	Costless arbitrage profit	1.981				
20						

European-style asset options

$$c - p = Se^{-iT} - Xe^{-rT}$$

□ Prepaid cost of carry relation

$$Fe^{-rT} = Se^{-iT}$$

□ European-style futures options

$$c-p=e^{-rT}\left(F-X\right)$$

Futures options

Consider portfolio:

		Termina	al value
Action	Initial value	$\tilde{F}_{_{T}} \leq X$	$\tilde{F}_T > X$
Buy futures	0	$\tilde{F}_T - F$	$\tilde{F}_T - F$
Buy European put	- <i>p</i>	$X - \tilde{F}_T$	0
Sell European call	С	0	$-(\tilde{F}_T - X)$
Sell T-bills (borrow)	$-(F-X)e^{-rT}$	F - X	F - X
Net value	$-(F-X)e^{-rT}-p+c$	0	0

□ <u>Illustration</u>:

- Consider European-style call and put on futures with:
 - \square exercise price of 70
 - □ time to expiration of 90 days
 - \square prices of 5.00 and 4.50
- Assume:
 - \Box futures price is 70
 - □ interest rate is 3%

□ European-style futures options

• Consider portfolio:

	А	В	С	D	E	F	G		
1		EUROPEA	AN-S	TYLE OPTIONS ON	FUTURES				
2	FUTURES			COSTLE	SS ARBITRA	GE PORTFOLIO			
3	Price (F)	70.00				Terminal value			
4				Action	Initial value	FT<=70	FT > 70		
5	OPTIONS			Buy futures		FT-70	FT-70		
6	Exercise price	70		Buy put	-4.500	70-FT	0		
7	Days to expiration	90		Sell call	5.000	0	-(FT-70)		
8	Time to expiration (T)	0.24658		Buy riskless bonds	0.000	0.000	0.000		
9	Call price (c)	5.000		Net value	0.500	0	0		
10	Put price (p)	4.500							
11									
12	INTEREST RATE (r)	3.00%							
13									
14	PUT-CALL PARITY								
15	Deviation	0.500							
16	Costless arbitrage profit	0.500							

Inter-market relations

- □ Asset and futures options
 - Since futures, options and futures options expire at same time, it follows:

c(F) = c(S)p(F) = p(S)

Inter-market relations

□ Calls

c(F) = c(S)

		Termir	nal value	
Action	Initial value	$\overline{\tilde{S}_{_{T}}} \leq X$	$\tilde{S}_T > X$	
Sell call on asset	c(S)	0	$-(\tilde{S}_T - X)$	
Buy call on futures	-c(F)	0	$\tilde{S}_T - X$	
Net value	$\overline{c(S) - c(F)}$	0	0	

Lesson summary

- No-arbitrage pricing relations exist linking all derivatives to underlying asset price.
- □ Most commonly applied in practice are:
 - Put-call parity
 - Inter-market price relations