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This paper examines the pricing performance of the valuation equation for American call options on 
stocks with known dividends and compares it with two suggested approximation methods. The 
approximation obtained by substituting the stock price net of the present value of the escrowed 
dividends into the Black-Scholes model is shown to induce spurious correlation between prediction 
error and (1) the standard deviation of stock return, (2) the degree to which the option,is in-the-money 
or out-of-the-money, (3) the probability of early exercise, (4) the time to expiration of the option, and 
(5) the dividend yield of the stock. A new method of examining option market efficiency is developed 
and tested. 

1. Introduction 

Perhaps the most significant development in the financial economics literature 
of the last decade is the option valuation work of Black and Scholes (1973). Under 
a somewhat stringent set of assumptions they derive the first closed form solution 
to the call option pricing problem. Their most exacting assumption disallows 
income distributions on the underlying security. It is somewhat disconcerting 
when, for example, less than live percent of the options listed on the Chicago 
Board Options Exchange are written on non-dividend-paying stocks. 

In this paper a model for pricing American call options on dividend-paying 
stocks is presented and compared with prior approximate solutions to the 
problem. Section 3 reviews prior empirical work on option pricing models. That 
work is concerned with three issues: (1) estimating the standard deviation of 
stock return, (2) testing alternative option pricing models, and (3) testing the 
efficiency of options markets. After a description of the data, these issues are 
addressed in turn. A new method of estimating stock volatility is presented in 
section 5. Using the standard deviation estimates, model option value is 
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calculated and compared with approximations previously used. In section 7 
the profitability of a riskless hedging strategy of buying options undervalued 
by the model and selling options overvalued by the model is examined. 

Finally, the paper is summarized and conclusions are drawn. 

2. Theory of option valuation 

The general equilibrium pricing solution to the call option pricing problem 
derived by Black and Scholes (1973) incorporates the following assumptions: 

61) All individuals can borrow or lend without restriction at the instantaneous 
riskless rate of interest, Y, and that rate is constant through the life of option, 
7: 

(-4.2) Stock price movement through time is described by the stochastic 

differential equation 

dP/P=pdt+adz, 

where p is the instantaneous expected rate of return on the stock, CT is the 

instantaneous standard deviation of stock return (assumed to be constant 
over the life of the option), the dz is a standard unit normally distributed 

variable. 

(A.3) The capital market is free from transaction costs (e.g., brokerage fees, 

transfer taxes, short selling and indivisibility constraints) and tax 
differentials between dividend and capital gain income. 

(A-4) The stock pays no dividends during the option’s time to expiration. 

The value of a European call,’ denoted c(P, T,X), provided by Black and 
Scholes is 

where 

(1) 

d, = {In (P/X)+(r+0.5a2)T}/ofi, d,=d,-ofi, 

X is the option’s contracted exercise price, and N,(d) is the univariaie cumulative 
normal density function with upper integral limit d. 

The assumed absence ofincome distributions on the underlying security causes 
the Black-Scholes formula to overstate the value of an American call option on a 

‘Assuming the common stock underlying the call option has no income distributions to 
shareholders, the value of the American call is equal to the value of the European call. See Merton 
(1973, p. 144) or Smith (1976, pp. 8-11). 
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stock with dividend payments during the option’s time to expiration. A dividend 
paid during the option’s life reduces the stock price at the ex-dividend instant, and 
thereby reduces the probability that the stock price will exceed the exercise price 
at the option’s expiration. 

In order to introduce a discrete dividend payment into the option pricing 
problem it is usually assumed that: 

(A.4’) The stock pays a certain dividend, D, at the ex-dividend instant, t (t < T), 
and the stock price simultaneously falls by a known amount, crD. 

With the amount and timing of the dividend payment known, a simple 
approximation for the value of the American call is the value of a European call, 
c(S, T, X), where S is the stock price net of the present value of the escrowed 
dividend payment, S, = P, - MD e- “‘-“forr<tandS,=P,fort5z57:Notethat 
by using the lower stock price the model’s price is adjusted downward to allow 
for the stock price decline at the ex-dividend date. 

Unfortunately, this approximation ignores a second dividend-induced effect 
in that it presumes that the call will not be exercised prior to expiration. 
Smith (1976, pp. 13-14) demonstrates that the American option holder may 
benefit from exercising early, just prior to the ex-dividend instant. To compensate 
for this possibility Black (1975, pp. 41, 61) recommends an approximate value 
equal to the higher of the values of a European call where the stock price net of the 
present value of the escrowed dividend is substituted for the stock price and a 
European call where the time to ex-dividend is substituted for the time to 
expiration, that is, 

max Cc(S, 7: Xl, c(P, 4 WI. (2) 

The first option within the maximum value operator assumes the probability 
of early exercise is zero, while the second option assumes it is one. 

The American call option on a stock with a known dividend, however, may be 
characterized by an early exercise probability between zero and one. For some 
time, this option pricing problem was thought to be insoluble.2 If the stock price 
follows a lognormal diffusion process, there exists some non-zero probability that 
the dividend cannot be paid. Roll (1977) and Geske (1979) resolve the 
problem by assuming that the stock price net of the present value of the escrowed 

‘Schwartz (1977) provides a numerical method by which the value of an American call on a stock 
with known dividends can be approximated. 
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dividend follows the lognormal process. That is, if Assumption (A.2) is amended 
such that: 

(A.2’) Stock price movement through time is described by the stochastic 
differential equation 

dS/S=pddt+odz, 

where S represents the stock price net of the present value of the escrowed 
dividend, 

the solution to American call option pricing problem, as provided by Whaley 
(1981), is 

C(S, TW=SCN,(b,)+N,(a,, -b,; -JtIT)I 

-Xe~‘T[Nl(b2)er(T-*)+N2(u2, -b,; -Jtlr)] 

+ aD e-“Nl(b2), (3) 

where 

a, = {ln(S/X)+(r+0.502)T}/a~, a2=a,-0 JT, 

b, ={ln(S/S:)+(r+0.5~2)t}/~& b2=b,-o&, 

and N,(a, b; p) is the bivariate cumulative normal density function with upper 
integral limits a and b, and correlation coefficient p. SF is the ex-dividend stock 
price determined by 

c(S:, T- t, X) = S: + uD -X, (4) 

above which the option will be exercised just prior to the ex-dividend instant. 
Note that if the American call is neither a dominant nor a dominated security 

its value is bounded from below by the Black approximation. The first term 
within the maximum value operator of expression (2) represents the price of the 
call if there were no chance of early exercise. Since the right to early exercise has a 
non-negative value, C(S, 7; X) 2 c(S, 7; X). The second term represents the price of 
a call with maturity t. At E, its payoffs are 0, if S, + crD <X, and S, + aD -X, if S, 
+ aD 2 X. At t, however, the American call is worth c(S,, T- t, X), if S, + ctD < X, 

and max [c(S,, T- t, X), S, + uD - X], if S, + uD 2 X. In the absence of dominance, 
therefore, C(S, ~X)~c(P, t,X), and, if the arguments are combined, 
C(S, IT; X) 2 max[c(S, I: X), c(P, t, X)]. 
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3. Review of option pricing tests 

Previous empirical analyses of option pricing models have been concerned to 
varying degrees with three issues - volatility estimation, model specification and 

market efficiency. While a detailed description of each study is beyond the scope 
of this paper, a brief overview of the salient features relating to these issues is 
warranted. 

3.1. Volatility estimation 

Of the determinants in the call option pricing formulas, all but one are known 

or can be estimated with little difficulty. The exercise price and the time to 

expiration are terms written into the option contract; the stock price and the 
riskless rate are easily accessible market-determined values. The dividend 
information, if it is required, can be fairly accurately estimated by casual 
inspection of the stock’s historical dividend series. The problem parameter is the 

expected volatility of the stock return. 
An obvious candidate to proxy for the volatility expectation is an historical 

estimate obtained from the stock’s realized return series. Black and Scholes 

(1972), as well as Galai (1977) and Finnerty (1978), use this estimate in valuing 
calls using the Black-Scholes option pricing model. Black and Scholes, however, 
recognize that a substantial amount of the observed deviation of the model’s price 

from the market price may be attributable to an ‘errors-in-the-variables’ 
problem. In fact, they note that there is a tendency of the model to overprice 
options with high standard deviation estimates and to underprice options with 
low standard deviation estimates. 

Latane and Rendleman (1976) investigate the predictive ability of a weighted 
implied standard deviation vis-8-vis the historical estimate. If there are n options 

on a stock at a particular point in time, n implied standard deviations, aj, 
j=l , . . ., n, may be obtained by setting the option’s market price equal to the model 
price, 

cj = Cj(rTj), 

and solving for oj, where all of the remaining arguments of C( .) are assumed to be 
known. If these estimates are then weighted and averaged, 

a=~ojaj ~Wj, 

j=l I j=l 

where oj is the weight applied to the jth estimate, a weighted implied standard 
deviation is realized. 

Previous researchers employ various weighting schemes. Schmalensee and 
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Trippi (1978) and Pate11 and Wolfson (1979), for example, use an equal weighted 
average, wj = l/n, j = 1,. . ., n. Latane and Rendleman, on the other hand, weight 
according to the partial derivative of the call price with respect to the standard 
deviation of stock return, that is, oj=aCj/aaj, j= 1,. ..,n. In doing so, the 
standard deviation estimates of options which are theoretically more sensitive to 
the value of 0 are weighted more heavily than those which are not. Chiras and 
Manaster (1978) follow a similar logic in using the elasticity of the call price with 
respect to standard deviation, oj= (aC,/a&,)(a,/C,), j = 1, . . ., n. 

Regardless of the weighting scheme, however, there appears to be strong 
empirical support in favor of an implied volatility measure. Latane and 
Rendleman and Chiras and Manaster correlate the historical and the implied 
measures on the actual standard deviation of return3 and conclude that the 
implied estimate is a markedly superior predictor. The market apparently uses 
more information than merely an historical estimate in assessing the stock’s 
volatility expectation. 

3.2. Model specification 

The valuation equation most commonly employed in past research has been 
either the Black-Scholes relation c(P, 7: X) or the approximation c(S, 7: X). Black 
and Scholes, for example, examine Over-the-Counter (OTC) option prices during 
the period May 1966 through July 1969. They apply their model directly with no 
dividend adjustment since the OTC options are protected. For protected options 
the exercise price is reduced by the amount of the dividend on the ex-dividend 
date. For unprotected options this is tantamount to reducing the stock price by 
the present value of the escrowed dividends. Galai compares the Black-Scholes 
price with and without the dividend adjustment by using unprotected Chicago 
Board Options Exchange (CBOE) pricing data and concludes that the latter 
model provides a more adequate description of the observed structure of call 
option prices. Studies by Merton, Scholes and Galdstein (1978) and MacBeth and 
Merville (1979) employ the approximation c(S, ?; X). 

Chiras and Manaster account for dividends by transforming the payments into 
a constant, continuous dividend yield and applying the Merton (1973a) model. 
While this method uses dividend information in valuing the option, the 
transformation of discretely-timed dividend payments to a continuous 
dividend yield effectively assumes away the American option holder’s early 
exercise dilemma. 

Schmalensee and Trippi apply the Black-Scholes model without dividend 
adjustment to CBOE options to compute implied standard deviations, but try to 
minimize the dividend problem by concentrating on options whose underlying 

3While Latane and Rendleman (1976) and Chiras and Manaster (1978) refer to the standard 
deviation computed with stock returns generated during the option’s life as the ‘actual standard 
deviation of return’, it is only an estimate of the realized volatility. 
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stocks have low dividend yields. Latane and Rendleman and Finnerty use the 

Black-Scholes formula directly, with no consideration of the effects of the 

dividend payments. 
Of the tested option pricing models, it appears that the Black-Scholes 

formula with the stock price net of the present value of the escrowed dividends 
provides the best explanation of the observed structure call option prices to date. 
Galai demonstrates a substantial increase in trading profits by employing this 

approximation instead of the Black-Scholes model with the stock price cum 
dividend. Black and Scholes, Black, and MacBeth and Merville, however, report 
certain systematic biases in the application of the model that are worth 

investigating in the present study. For instance, the degree of under- and over- 
pricing appears to be related to the standard deviation of the stock return - 

options on high-risk stocks tend to be overpriced and the options on low-risk 
stocks tend to be underpriced. Further, the degree of under- and over-pricing 

appears to be related to the difference between the stock price and the exercise 

price (i.e., how far in-the-money or out-of-the-money the option is), and the time 

to expiration of the option. 

3.3. Market efficiency 

The tests of option market efficiency usually involve an option trading strategy 

that is designed to create a riskless portfolio, which should, in an efficient capital 
market, yield the riskless rate of interest. The key insight into the Black-Scholes 
development is, in fact, the premise that risk substitutes have the same 

equilibrium rate of return. By taking a long (short) position in one call option and 

a short (long) position of dC/aP shares of the stock, a riskless hedge is created, 
which, if continuously rebalanced through time, leads to a partial differential 
equation whose solution, subject to the terminal date boundary conditions, is the 
Black-Scholes call option pricing model. 

From the standpoint of empirical investigation, continuous rebalancing is not 
possible, and discrete readjustment of the portfolio position is substituted. 
Undervalued (overvalued) options are identified, and are bought (sold) and 
hedged against a short (long) position of X/aP shares of the stock. All of the 
hedge positions are aggregated and the excess dollar returns [i.e., dollar returns 

on the hedge portfolio less the investment cost times (one plus the riskless rate of 
interest)] computed. The process is repeated on each trading date so that a time 
series ofexcess dollar returns is generated. A regression of the portfolio returns on 

a stock market index is usually included to verify that the hedge position is 
riskless, and, if so, the intercept term and its corresponding standard error 
provide a means of testing whether significantly positive (negative) returns are 
earned. 

Latane and Rendleman use this procedure in testing option market efficiency, 
however, they aggregate separately the undervalued and the overvalued 
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positions. The problem with this approach is that the returns on each portfolio 
have downward bias since the call options have a predictable decrease in 
value over the trading interval At, all other things remaining constant. For a 
detailed discussion on this point, see Boyle and Emanuel (1980). 

Black and Scholes, Galai, and Finnerty combine the undervalued and the 
overvalued positions into one portfolio, long in the former group and short in the 
latter. If the characteristics of the long options (i.e., the stock prices, exercise 
prices, times to expiration and standard deviations of stock return) are nearly the 
same as those of the short options, the portfolio will be approximately riskless 
over the interval At. 

Chiras and Manaster choose to hedge each undervalued option against an 
overvalued option on the same stock, thereby eliminating the need for investment 
in the stock. Unfortunately the requisite of being able to identify both an 
undervalued and an overvalued option on the same stock unduly restricts the 
number of options that may be included in the sample. In fact, the technique is so 
restrictive that Chiras and Manaster are left with an average of less than 12 
options in each of their 23 cross-sections.4 

4. Data 

The data employed in this study consisted of weekly closing price observations 
for all Chicago Board Options Exchange (CBOE) call options written on 91 
dividend-paying stocks during the 160 week period January 17, 1975 through 
February 3, 1978. The prices of the stocks, options and Treasury Bills were 
compiled from various issues of the Wall Street Journal. Wherever necessary, 
adjustments were made for stock splits and stock dividends. The riskless rate 
appropriate to each option was estimated by interpolating the effective yields of 
the two Treasury Bills whose maturities most closely preceeded and exceeded the 
option’s time to expiration.5 The dividend information was gleaned from 
Standard and Poor’s Stock Reports, and the weekly stock return data were 
generated from the Centerfor Research in Security Prices (CRSP) daily return file. 
The market index was the value-weighted portfolio of NYSE and AMEX 
securities provided on the CRSP return file. 

Three exclusion criteria were imposed on the option pricing information. First, 
the option’s underlying stock had to have exactly one dividend paid during the 
option’s remaining life. Without a dividend paid, the American call option 
formula would have reduced to the simple Black-Scholes model, and, since the 
focus of study is on investigating the effects of the dividend payment on the 
observed structure of call option prices, options with expiration dates before the 

%ee Chiras and Manaster (1978, p. 230). 
‘The rate of interest for a particular Treasury Bill was assumed to be the annualized, arithmetic 

average of the rates implied by the bid and ask prices. 
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stock’s next ex-dividend date were eliminated. With more than one dividend paid 

before expiration, the structure of the valuation equation would have become 
more complex, requiring, among other things, the evaluation of an 
approximation for a trivariate or higher-order multivariate cumulative normal 

density function. Since the computational cost of such an integral 
approximation is high,6 options with times to expiration including more than 

one ex-dividend date were, likewise, excluded. 
The second restriction eliminated options whose premia were below fifty cents. 

CBOE regulation generally prohibits traders from establishing new positions in 
these options so that the reported prices may not accurately reflect transacting 

prices. 
The remaining constraint was imposed to facilitate the market efficiency test 

design. For each cross-section t, all options employed were required to have three 

consecutive weekly prices. The first week’s price, C, 1, was required to compute 
the implied standard deviation of stock return.’ This estimate was, in turn, 
employed in the valuation process of C, at t in order to establish whether the 

option was under- or over-priced. The price, C,+i, was used to compute the 

holding period return of the option over the trading interval t to t + 1. 

Descriptive statistics of the remaining sample data are included in table 1. The 
means, standard deviations, mean absolute deviations and percentile ranges of 

the 15,582 sets of option pricing information are reported. On average, the sample 
options are on-the-money, with the mean stock price only slightly exceeding the 

mean exercise price. The riskless rate standard deviation is low during the sample 
period, indicating that interest rate uncertainty is not a potential problem. 

Certain limitations of the data should be noted. All of the option pricing 
formulas require that the stock price be known at the exact instant the 
option is priced. However, the stock price is the 3:00 p.m. EST Friday 
closing in New York,* while the option price is the 3:00 p.m. CST Friday 
closing in Chicago. Further, the closing price is the price for the last 

transaction, which may have occurred before the market closing and which 
may be either a bid or an ask price. To the extent that the closing quotations 

may not accurately reflect the prices at which the securities may be 
transacted, random noise in the empirical results should be expected. 

In all applications of the American call option formula and the two 

approximation techniques to follow, the coefficient c( preceding the dividend 
variable was assumed to be equal to one. There are several reasons why the 

6For further discussion, see Milton (1972). 
‘The motivation for using the previous week’s implied standard deviation in the option valuation 

process is discussed in the next section. 
sDuring the sample period, all options, with exception of those written on Houston Oil and 

Minerals Corporation, were written on stocks listed on the New York Stock Exchange. Houston Oil 
was listed on the American Stock Exchange. 
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coefficient may be less than one, however. Differential income tax rates between 

dividends and capital gains, transaction costs, and the time interval between the 
ex-dividend and dividend payment dates may cause the stock price decline at the 
ex-dividend instant to be an amount less than the dividend. Since there was no 
manageable way of handling these institutional restrictions,’ they were ignored. 

5. Implied standard deviation estimation 

5.1. Procedure 

The methodology implemented to impute the estimate of the future volatility of 

the stock return differs from the previous studies in three important ways. First, 

rather than explicitly weighting the implied standard deviations of a particular 

stock where the weights are assigned in an ad hoc fashion, the call prices are 
allowed to provide an implicit weighting scheme that yields an estimate of 
standard deviation which has as little prediction error as is possible.” At a point in 
time options written on the same stock may be represented as 

Cj=Cj(a)+&j, (5) 

where Cj is the market price of the option, Cj(a) is the model’s price (where all 

argument values are known, with exception of a), and Ej is a random disturbance 
term. The estimate of c is then determined by minimizing the sum of squared 
residuals, 

min t ef, 
{a) j=l 

(6) 

where ej is the observed residual and 6 is the estimated parameter. 
The nonlinear estimation procedure applied to minimize the sum of squared 

residuals is the first order linearization process described by Eisner and Pindyck 
(1973, pp. 3&34).” As adapted to the present problem, the iterative technique 

begins with an expansion of Cj into a Taylor series around some initialization 
value oo, that is, 

Cj= Cj (co) +z (cr - go) + . . . higher-order terms.. . + ej. (7) 
00 

‘Actually, the time lapse between the ex-dividend and dividend payment dates may be 
handled quite easily. During the sample period the average riskless rate was 5.69% per year and 
the average time between the ex-dividend and dividend payment dates was 26 days or 0.071 
years. The value of a is therefore approximately e~0~0s69c0~071~=0.996. 

‘“Implied standard deviations are accurate only insofar as the call option model is correctly 
specified. In general, the implied volatility will not be the ‘best’ estimator of the stock’s future 
standard deviation of return. 

’ ‘For a review of nonlinear estimation techniques, see Spang (1962) or, more recently, Goldfeld 
and Quandt (1972). 
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Ignoring the higher-order terms and gathering known values on 
side of the equation, 

cj-Cj(O,)+C,~ 
ac. I 1 Z0-l 

+Ej. 

=0 aa CT0 

the left-hand 

(8) 

Applying ordinary least squares (OLS) to (8) yields an estimate of G. If that 
estimate satisfies an acceptable tolerance, 

I@, - G_#Jol < x, (9) 

where K is a small positive constant, 8, is the estimate of 0. If, the tolerance test 
fails, eq. (5) is linearized around the realized parameter estimate I?~, and OLS is 
reapplied. The process is repeated for 8,, i = 2,. . ., until the tolerance criterion is 
satisfied. 

The second difference between the implied volatility estimation procedure is 
with respect to the timing of the estimation. It has apparently become an accepted 
practice to compute the implied standard deviation at the same instant at which 
the option is priced. l2 Conceptually, this procedure is difficult to understand in 
that, at an instant in time, the valuation equation is assumed to price options 
correctly (when the implied volatility is computed), and, yet, simultaneously, is 
assumed to price options incorrectly (when the model is used to identify whether 
the option is under- or over-priced). As an empirical matter, this procedure 
eliminates from study all single options written on a stock at a particular instant. 
With only one option, the model will exactly price the option since the volatility 
estimate at t is that standard deviation which equates the observed call price to 
the model’s price. Moreover, even if two or more options are available, Phillips 
and Smith (1980, pp. 189-192) point out that contemporaneous estimation of 
volatility and valuation of options leads to a selection bias which systematically 
identifies bid prices as undervalued options and ask prices as overvalued options. 
To circumvent these problems, the implied volatility is computed at t- 1. The 
conceptual problem is alleviated, at least in part, a larger sample size is retained, 
and a potential source of selection bias is eliminated. 

Finally, unlike the previous empirical studies which compute a single volatility 
estimate on the basis of all of the options written on a stock at a particular point in 
time, the present study uses only those options which share a common maturity. 
Pate11 and Wolfson (1979, pp. 119-123) argue and demonstrate empirically 
that the standard deviation implied by the price of a longer-lived option 
written on a stock is greater than the standard deviation implied by the price 

“Latane and Rendleman (1976), Chiras and Manaster (1978) and MacBeth and Merville (1979), 
among others, use this approach. 
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of a shorter-lived option if there is an anticipated information event between 
the expirations of the two options. Given that the difference between option 
lives is typically three months for CBOE call options, an information release, 
such as, for example, an earnings announcement, may be expected, and, 
hence, maturity-specific implied stock volatilities, rather than a single implied 
volatility common to all maturities, are most appropriate. 

5.2. Results 

For each stock, implied standard deviations were computed weekly using the 
previous period’s call prices and a tolerance criterion of K = 0.0001.’ 3 The 
numbers of options included in each computation are summarized in table 2. The 
15,582 sets of call price information yielded 9,318 implied standard deviations, 
each computation including an average of 1.67 options of common maturity. Of 
the 9,318 computations, 936 were estimates for a second option maturity, or, 
equivalently, 1.11 estimates of the stock’s volatility were obtained each week. 

Descriptive statistics for the implied standard deviations computed on the 
basis of the valuation equation C(S, T, X) are reported in table 3. On average, 6 
was 0.3004 on an annualized basis. The percentile ranges indicate that the 
distribution of volatilities is skewed to the left, with the lowest value being 0.0493 
and the highest being 1.0379. Implied volatility estimates were also computed on 
the basis of the approximation models c(S, T, X) and max [c(S, 7: X), c(P, t, X)], 
and the results were nearly identical to those of C(S, TX). 

Table 2 

The number of options of common maturity included in each implied standard deviation 
computation. 

Number of options of common 
Number of maturities maturity written on a stock Number of 
of options written implied standard 
on a stock 1 2 3 4 5 6 deviation estimates 

1 4,056 3,202 880 219 22 3 8,382 
2 455 432 43 2 2 2 936 

Total number of implied standard deviation estimates 9,318 

Total number of call prices used 15,582 

r3With the maximum absolute relative error (K) set at 1 one-hundredth of 1 percent, an average of 
slightly more than 4 iterations were required for convergence. 
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Table 3 

Distribution of the 9,318 implied standard deviations 
computed using the 15,582 sample call option prices and 
the valuation equation for an American call option on a 

stock with a known dividend. 

Implied 
standard deviation 
of stock return 
B 

Mean 0.3004 
Standard deviation 0.1082 
Mean absolute deviation 0.0855 

Deciles 0.10 0.1801 
0.20 0.2104 
0.30 0.2340 
0.40 0.2577 
0.50 0.2826 
0.60 0.3092 
0.70 0.3423 
0.80 0.3865 
0.90 0.4529 

6. Tests of option valuation 

6.1. Procedure 

Using the implied standard deviation estimates developed according to the 
procedure outlined in the preceding section, options were valued according to: 
(1) the American call option valuation equation, C(S, TX), (2) the Black 
approximation, max[c(S, T, X), c(P, t, X)], and (3) the Black-Scholes formula 
applied to the stock price net of the present value of the escrowed dividend, 
c(S, IT: X).14 For each model the following cross-sectional regressions, designed to 
examine the difference between actual (C) and model (2) option values, were 
estimated: 

Test 1: Cj=~lo+61C, +pj, 

Test 2: 
cj-ej_ ~ 
T--cr,+a,cj+CLj, 

14Using the previous week’s implied standard deviation may have introduced an ‘errors-in-the- 
variables’ problem in the tests of this section. Pate11 and Wolfson (1979) document that the implied 
standard deviation of common stock return is ‘high’ near earnings announcements dates, and, to the 
extent that such an information release may have occurred between volatility estimation at week f - 1 
and option valuation at week t, there will be inaccuracy in the test results. 
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Test 4: 
C.-C. 
-=cr,+a,pj+pj, 

cj 

Test 5: 
C.-C. 
~=cC,+Cr,Tj+~j, 

‘j 

Test 6: 
C.-C. 
-=a,+cc,CIj+/Lj, 

ci 

where pi denotes the probability ofearly exercise, djdenotes the dividend yield, pj 
is a disturbance term, and all other notation is as it was previously defined. 

6.2. Results 

To begin, all observations were pooled, and the grand means and standard 
deviations of the option prices were computed. The results were as follows: 

Value Mean 
Standard 
deviation 

Observed $4.1388 $5.2400 
C(S, 7: X) 4.1291 5.1025 
max Cc(S, 7: X), c(P, t, X)1 4.1198 5.1025 
c(S, 7: X) 4.1071 5.1036 

While the American call formula provided prices which are closer to the observed 
prices, all of the formulas yielded prices which are, on average, within three and a 
half cents of the observed market price. 

The simple linear regression of market price on the model value is in the spirit 
of Theil’s (1966) ‘line of perfect forecast’. With perfect prediction the values of the 
coefficients CQ, and ~1~ in the regression 

should be indistinguishable from zero and one, respectively. The estimate of cl0 
and its corresponding standard error provide a means of testing the degree of bias 
in the valuation equation; the estimate of a1 and its standard error provide a 
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means of testing the degree of ineffrciency.‘s The coefficient of determination 
from the regression reflects the degree to which the valuation equation is able to 
explain the variation in the observed call prices. 

Observed market prices were regressed on each model’s prices in each of the 
160 cross-sections, where the number of observations included in the regressions 

averaged 97.3875 and ranged from 30 to 157. The average values of the weekly 

parameter estimates, z,, and d, the Student t ratios testing the hypotheses that the 
average value of the intercept term is equal to zero, t(&),‘6 and that the average 

value of the slope term is equal to one, t(h,), and the two-tailed probability levels 
that the t-values will be exceeded in absolute magnitude by a random variable 

following a Student t distribution p[t(&,)] and p[t($I)], are reported as Test 1 of 
table 4. The first-order serial correlation of the parameter estimates, p(B,) and 

~(a,), and the average of the coefficients of determination, R2, are also included. 
All of the models seem to perform extremely well, with the explained variation 

being greater than 98 percent in all cases. Although there do not appear to be 
perceptible differences between the models, it is likely as a result of prediction 

error being small in relation to the magnitude of call price. In fact, when call price 

was regressed on the boundary condition max [0, S-X emrr] in each of the 160 
cross-sections, the average coefficient of determination was 87 percent. In 
subsequent tests the focus will be on relative prediction error so that the 

attenuating influence of heteroscedasticity will be reduced. Before leaving the 
results of Test 1, however, it is interesting to note that all models demonstrate a 

slight tendency to overprice low-priced options and to underprice high-priced 

options (i.e., 12~ > 1). 
The remaining tests focused on identifying systematic behavior in the relative 

prediction error [i.e., (C- C)/C] of the valuation models. As a preliminary 

investigation, the relative prediction errors of all cross-sections were, again, 
pooled, and the grand means and standard deviations computed. The results 

were as follows: 

Model Mean 
Standard 
deviation 

CP, 7: w 0.0108 0.2382 
max II@, 7: X), c(p, r, X)1 0.0148 0.2396 
c(S, 7: X) 0.0215 0.2524 

“When the forecast model underestimates high (low) values and overestimates low (high) values 
(i.e., 2, # l), it is said to be. inefficient. 

leThe Student t ratio for the intercept term, for example, was computed as t(&,)=@&,/s(&,). 
This methodology is not unlike that employed by Fama and MacBeth (1973, pp. 619-624). 
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The American call formula more clearly dominates when these figures are 
considered: both the mean and the standard deviation of the relative prediction 
error are lower than they are for either of the suggested approximations. 

Test 2 addressed the underpricing of low-risk and overpricing of high-risk 
options issue. Both Black and Scholes and MacBeth and Merville document this 
phenomenon, but both authors’ models exclude the premium for early exercise. If 

the probability of early exercise is correlated with the standard deviation of stock 
return, the American call formula should reduce the systematic pricing 
discrepancy. 

The results reported for Test 2 in table 4 indicate that there exists a significantly 
positive relationship between prediction error and stock volatility for all models. 

The American call serves to reduce the magnitude of the slope coefficient and the 
coefficient of determination, but the hypothesis that there is no relationship 
between the variables is soundly rejected. All models appear to overprice 

options on high-risk stocks and to underprice options on low-risk stocks. 

Test 3 attempted to uncover systematic underpricing and overpricing of in-the- 
money and out-of-the-money options-again, a result that has been the cause of 

consternation. The findings indicate that the relationship is not as strong as one 
may have been led to believe. The null hypothesis of a zero slope coefficient 

cannot be rejected at the 5 percent level for any of the valuation models. Again, 
the American call formula did better than the alternative-models, with its slope 
coefficient being lower and less significant. 

The fourth regression examined whether pricing inaccuracy was related to the 
probability of early exercise. In this test the independent variable p was 
computed as 

where ST represents the ex-dividend stock price above which the American 

option holder will exercise just prior to the ex-dividend instant and L( .) is a log- 
normal density function. Since the simple approximation does not account for the 
prospect of early exercise and since the Black approximation does so only in an 
ad hoc fashion, the results should range from a strong relationship for the simple 
model to no relationship for the American call formula. 

“When a riskless hedge can be formed between the call option and its underlying stock, the 
value of the American call on a stock with a known dividend is the sum of the discounted 
conditional expected value of the option’s worth if exercised just prior to the ex-dividend instant, 
e-“[E(S, 1 S,> SF)-X + aD] prob(S,> S:), and the discounted conditional expected value of the 
option’s worth if exercised at expiration, e~‘TIE(S,IS,>X and S,sS:)-X] prob(S,>X and 
S, 5s:). In the American call option formula (3) N,(b,) represents prob(S, > SF) and N,(a,, -b,; 
-Jt/7’) represents prob(Sr>X and S,sS:). For the present purpose of measuring the 
probability of early exercise, therefore, N1(b2) was used. 
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The results of Test 4 reflect the expected behavior. The relationship between 
the prediction error of the approximation c(S, 7;X) and the early exercise 
probability is strongly significant, with the t-value of the slope coefficient 

exceeding 7. The Black approximation apparently improves matters, but the 
relationship remains significant. The American call formula almost completely 
eliminates the association. 

The fifth regression was included to test for the previously reported 
relationship between pricing error and the time to expiration of the option. The 
results show that while there exists a significantly negative relationship for the 
commonly applied approximation c(S, 7: X) (i.e., it underprices short-lived 
options and overprices long-lived options) it virtually disappears when the 

American call formula is used. 
The final regression tested for systematic relationship between prediction error 

and the dividend yield on the stock.‘* Here there should be a significant 
relationship using the approximation methods, but none with the American call 
formula. The magnitude of the early exercise premium is importantly influenced 

by the amount of the dividend payment, and, since neither of the approximations 
account for the premium adequately, prediction error should be found. 

The results of Test 6 are consistent with expectations. With the approximation 
methods the relationship between prediction error and dividend yield is strongly 
significant, and with the American call formula it is virtually non-existent. 

As a precautionary measure, the prediction errors of the three models were 
regressed on various combinations of the independent variables in Tests 2 
through 6. The aforementioned results seemed to be robust in that whenever 

standard deviation was included as an explanatory variable, it appeared in a 
significantly negative fashion, with its coefficient being of the same order of 
magnitude as that in Test 2. None of the remaining variables had a significant 

impact on the prediction error of C(S, 7; X), independent of what other variables 

were included in the regression. 
Finally, it should be noted that Tests 1 through 6, along with the multiple 

regressions, were performed on each cross-section as well as on the pooled 

observations, although only the former results are reported. Chow (1960) tests of 
the joint hypothesis that M,,~ = CQ and air= c(i) z = 1,. . ., 160, were computed for 
each of the tests, and at the 0.0001 percent significance level all values of 
F(318,15262) were in excess of the critical value. 

In summary, of the models tested, the American call option pricing formula 
provides the best description of the observed structure of call option prices. For 
options whose prices exceeded $0.50 and whose remaining lives included exactly 

one ex-dividend date, the relative prediction error of C(S, T,X) was markedly 
lower than those of the alternative models, and was not systematically related to: 

IsThe dividend yield variable was computed by dividing the escrowed quarterly dividend by the 
stock price. 
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(1) the degree to which the option was in-the-money or out-of-the-money, (2) the 
probability of early exercise, (3) the option’s remaining time to expiration, or (4) 
the stock’s dividend yield. The American call formula did not, however, eliminate, 
although it did reduce, the association between prediction error and the standard 
deviation of stock return. Further research into this relationship is clearly 
warranted. 

The simple approximation c(S, T, X) had results which were, for the most part, 
consistent with previous findings. Its prediction errors were related to the stock’s 
volatility, to the option’s time to expiration, and to all but one of the other 
variables considered. The degree to which the options is in-the-money or out-of- 
the-money apparently does not significantly affect the model’s prediction error, 
contrary to previous evidence. 

The Black approximation yielded results very much similar to those of the 
simple approximation, although its mean and standard deviation of relative 
prediction error were lower. The early exercise premium is apparently an integral 
component in pricing the American call option. 

7. Test of market efficiency 

7.1. Procedure 

The empirical evidence shows that the correspondence between observed and 
model prices is closest for C(S, 7; X). Nevertheless sufficient deviation could exist 
to permit trading profits. In an efficient options market, no costless arbitrage 
opportunities can exist. If a portfolio is formed by buying ‘undervalued’ and 
selling ‘overvalued’ options in proportions such that no wealth is used and no risk 
is assumed, its expected return is equal to zero.19S2o 

Underlying the weighting scheme employed to form the costless arbitrage 
position is the premise that asset prices are determined by security market 
relation2’ 

E(?J=r+Pi[E(F,)-r], (11) 

where E(Fi) and E(?,) are the instantaneous expected returns on asset i and the 
market, respectively, r is the riskless rate of interest, and pi = cov (pi, “r,)/var (“r,,,) is 

lgThe null hypothesis of a zero expected return on the costless arbitrage portfolio jointly tests the 
propositions that: (1) the American call option model is correctly specified, (2) the implied volatility of 
common stock return is an accurate reflection of the expected volatility, and (3) the options market is 
efficient. 

“Costless arbitrage portfolio test methodology has been used in previous tests of capital asset 
pricing. See, for example, Black and &holes (1974) and Watts (1978). 

‘IThe continuous time version of the capital asset pricing model was derived by Merton (1973b). 
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asset i’s instantaneous relative systematic risk. For portfolios the relation is 

W,) = r + B,CW,) - rl, (12) 

where E(?& = 1 oiE(3;), p, = 1 Wipi and 1 oi = 1, and wi denotes the proportional 
investment in security i. 

The riskless hedge position consists of two portfolios: the first containing 
undervalued options (denoted by the subscript u), and the second containing 
overvalued options (0). Applying eq. (12), the expected returns on these portfolios 
are 

and 

E(L;) = r + B,CJ$fm) - rl, (13) 

I@,) = r + B,[IW,) - f-1, (14) 

respectively. If the undervalued securities are bought and the overvalued sold, the 
expected return on the hedge position (h) is 

Wh) = JV,) --V,) = (A - B,)C.V,) - rl. (15) 

If the constraint /I. =/I,, is additionally imposed, the expected return of this zero- 
investment, zero-risk hedge portfolio becomes 

E(ih) = 0. [E(?,) - r] = 0. (16) 

On first appearance the practical matter of creating a riskless arbitrage port- 
folio may seem as simple as investing equally in the options of the under- 
valued and the overvalued portfolios, and then hedging one portfolio against 
the other. Unfortunately this scheme does not ensure a perfect risk hedge, 
that is, /Iti = fl,. To circumvent this problem a modest adjustment is made in the 
equal-weighted averaging procedure. First, the options in the undervalued 
(overvalued) portfolio are ranked in descending order of systematic risk. Two 
portfolios are then formed: the first by equal-weighted investment of one dollar in 
the high-risk options, and the second by equal-weighted investment of one dollar 
in the low-risk options. Where the number of options in the undervalued option 
portfolio is odd, the low-risk portfolio contains the extra option. Wealth is then 
allocated between the two portfolios such that 

(174 

wf+wf;= 1, (17b) 

of, Of; > 0, (17c) 
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where wf: is the proportion of wealth invested in the high-risk, undervalued 

option portfolio and of; is the proportion in the low-risk, undervalued option 
portfolio. /I* is an arbitrary value of b, as is to be described subsequently. 
Applying a similar procedure to the overvalued options, 

o,“+o;= 1, 

a~, w,” > 0. 

W-4 

PW 

Going long one dollar in the dollar in the undervalued option portfolio and short 
one dollar in the overvalued option portfolio, the net investment position is 

(~~+o~)-((o,H+o~)= l- 1 =o, (19) 

and the net risk position is 

exactly the desired costless arbitrage result. 
The selection of an appropriate value of fl* is somewhat arbitrary, although it 

should be chosen such that the allocation among the undervalued and the 
overvalued options is as even as possible. To accomplish this result /I* is set equal 
to the arithmetic average of the systematic risk coefficients of the options 

contained in the sample in week t. In this way there is reasonable assurance that 
the distribution of wealth among securities is fairly even, and the constraints (17~) 

and (18~) are satisfied. 
Implementing the concept of systematic risk coefficients for call options 

presents interrelated problems. Since the stock return generating process is 
stationary through time [Assumption (A.2)], the call option return process is 
non-stationary ~ the mean and the standard deviation decrease as the option 
approaches maturity. With respect to the test methodology, this non- 

stationarity poses two problems: (1) how to estimate the option’s beta, and (2) 

how to compensate for the systematic risk change in the ‘riskless’ hedge position. 
The estimation problem is resolved by employing an estimate of the stock 

beta and an estimate of the elasticity of the call price with respect to the 
stock price. Each week the most recent 100 weeks of historical stock returns 
(&J are regressed on the historical observed returns of a market index 
(Rmr),22 that is, 

RP, = up + PJLr + vpz> z=t-99,...,t. (21) 

Z2The log-linear investment relative form of the market model regression may have been more 
appropriate in this instance since the theoretical arguments were expressed in terms of instantaneous 
rates of return. Weekly returns, however, were used so as to provide a consistency in units with the 
weekly option portfolio rebalancing activity. 
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to estimate the stock’s systematic risk coefficient. The estimate, BP, is then 
multiplied by the elasticity of call price with respect to stock price to obtain an 
estimate of the call option’s systematic risk, that is, 

(22) 

where q( =(X/L?P)(P/C)) denotes the elasticity. 
The Temaining concern about non-stationarity has to do with the discretely- 

adjusted option trading activity. Since an option’s risk decreases 
deterministically as it approaches maturity, all other things remaining constant, 
the risks of the undervalued and the overvalued portfolios decrease over the 
investment interval At. However, if the overvalued options are shorted, the 
decrease in the risk of the undervalued option position should be approximately 
offset by the increase in the risk of the overvalued option position, as long as the 
composite characteristics of the two option portfolios are nearly the same. In 
other words, although non-stationarity is a problem when one considers only a 
long or only a short position in an option or a portfolio of options, hedging long 
options against short options should compensate for its effect. 

7.2. Results 

Descriptive summary statistics of the stock betas, elasticities and call option 
betas are reported in table 5. On average, the stock beta was close to one, with the 

Table 5 

Distribution of the 15,582 call option systematic risk estimates based upon the market 
model regressions of stock returns and the elasticities of the call option price with respect to 

stock price. 

Stock’s 
systematic 
risk 
estimate 

/% 

Elasticity of 
call price 
with respect to 
stock price 

rl 

Call 
option’s 
systematic 
risk 
estimate 

PC 

Mean 1.18 8.66 10.03 
Standard deviation 0.35 4.06 5.00 
Mean absolute deviation 0.21 3.04 3.85 

Deciles 0.10 0.80 4.44 4.58 
0.20 0.9 1 5.40 5.90 
0.30 1.00 6.19 7.04 
0.40 1.10 6.99 8.10 
0.50 1.17 7.86 9.22 
0.60 1.21 8.77 10.47 
0.70 1.36 9.92 11.85 
0.80 1.45 11.39 13.74 
0.90 1.62 13.48 16.58 

‘)By definition p,=cov (ic,T,)/var(i,). If the call option and stock instanlaneous rates of return 
are perfectly correlated, that is, ic = ~3, & = cov (13, r‘,)/var(i,J = qBP. 
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distribution appearing slightly skewed to the left. The average elasticity was about 
8.66, indicating that option prices are very sensitive to shifts in the stock price. 
The options were extremely risky, with their average beta exceeding 10. 

The portfolio formation procedure involved creating two equal-weighted 
portfolios of undervalued and of overvalued options. The two undervalued 
option portfolios were weighted such that constraints (17a) and (17b) were 
satisfied, and the two overvalued option portfolios were weighted such that 
constraints (18a) and (18b) were satisfied. Portfolio rebalancing occurred weekly 
so that 160 sets of weights were created. A summary of the portfolio compositions 
using the American call option valuation equation to identify undervalued and 
overvalued options is included in table 6. 24 The technique worked well, with 

Table 6 

Distributions of the allocations among the high-risk and low-risk undervalued and high-risk and low- 
risk overvalued option portfolios used in forming the costless arbitrage position in each of the 160 

weeks during the period .lanuary 17, 1975 through February 3, 1978. 

Portfolioa of 
risk options 

B* n, 

Mean 
Standard 

deviation 
Mean absolute 

deviation 

9.9939 48.78 0.6 192 0.3808 48.61 0.3198 0.6802 

2.4274 18.27 0.0959 0.0959 19.14 0.1478 0.1478 

2.0261 14.51 

Deciles 0.10 6.5801 28.00 
0.20 7.1246 35.00 
0.30 8.4664 38.00 
0.40 9.2773 41.00 
0.50 9.9085 47.00 
0.60 10.8531 52.00 
0.70 11.6174 56.00 
0.80 12.2248 63.00 
0.90 13.1151 75.00 

Undervalued Overvalued 

High-” L.OW-” High-b Low-b 
Number risk risk Number risk risk 

portfolio portfolio 
weight wetght 

L W/ W, 

of 
options 

n, 

portfolio portfolio 
weight weight 

H 
00 

L 
00 

0.0745 0.0745 

0.4993 0.2572 
0.5467 0.3008 
0.5748 0.3363 
0.6030 0.3598 
0.6247 0.3761 
0.6403 0.3985 
0.6669 0.4270 
0.7037 0.4553 
0.7459 0.5021 

15.47 O.li48 0.1148 

24.00 0.1384 0.5123 
32.00 0.2116 0.5536 
38.00 0.2619 0.5958 
42.00 0.2995 0.6304 
46.00 0.3280 0.6730 
52.00 0.3749 0.7010 
57.00 0.4115 0.7459 
66.00 0.4483 0.7860 
75.00 0.5003 0.8621 

aThe value of p* is the arithmetic average of the systematic risk coefficients of all options contained 
in the sample in each week. 

bTo form the costless arbitrage position each week, four portfolios are initially created by equal- 
weighted investments in high-risk and low-risk undervalued and high-risk and low-risk overvalued 
options. The four weights listed in these columns are the weights applied to the equal-weighted 
portfolios in order to match the systematic risk characteristics of the undervalued and overvalued 
option positions at /I*. By going long one dollar in the undervalued option position and short one 
dollar in the overvalued option position, a costless (i.e., $1 - 1= 0), riskless (i.e., /I* - p* = 0) arbitrage 
portfolio is formed. 

24The ‘picking of outliers’ using the American call formula may systematically identify bid prices as 
undervalued options and ask prices as overvalued options, and, hence, the rate of return on the hedge 
portfolio may be slightly overstated. For an explanation of this selection bias, see Phillips and Smith 
(1980, pp. 186-187). 
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more than 80 percent of the allocations falling within the 0.20.8 range and with 
the constraints (17~) and (1%~) satisfied in all of the cross-sections. 

Not surprisingly, the significantly negative relationship between prediction error 
and standard deviation of stock return influenced the structure of the costless 

arbitrage portfolio. The high-risk undervalued position and the low-risk 
overvalued portfolio were, in general, weighted more heavily in matching the 

systematic risks of the undervalued and the overvalued positions. 

With the weekly portfolio compositions computed, generating the hedge 
portfolio return series became a matter of weighting and averaging the weekly 
option returns. To test whether the hedge portfolio had zero systematic risk 

during the sample period, the hedge returns were regressed on the market returns 

(z = 1,. . .) 160). The OLS regression results were 

R,, = 0.0258 - 0.4469R,, + ehrr 

(4.59) ( - 1.43) 

R2 =0.0128, $= -0.007, 

s(R,)/s(R,) = 2.95, 

where the values in parentheses are t-ratios, $ is the estimated first-order serial 
correlation in the disturbance term and s( .) denotes the estimated standard 
deviation.25 Although the absolute magnitude of the slope coefficient appears 

large, its size relative to the average option risk level reported in table 6,9.9939, is 

small, and at the 15 percent significance level the null hypothesis that the 
portfolio has zero systematic risk cannot be rejected. 

The null hypothesis ofa zero expected return on the costless arbitrage portfolio 

was tested under two distributional assumptions. First, assuming the hedge 
returns were drawn from a normal distribution, a Student t test, 

was performed. The mean (X) and the standard deviation (s) of the 160 sample 
returns were 0.0246 and 0.0707, respectively, so that the Student t ratio was 4.41. 
If expected returns were, on average, realized during the sample period, the null 
hypothesis is rejected at the 0.0019 percent significance level. 

If the hedging of the undervalued option portfolio against the overvalued 
portfolio did not adequately control for the nonstationarity of the option return 
process, the hedge portfolio’s return distribution might be asymmetric, with the 
direction of the asymmetry contingent upon whether the deterministic decrease 
in the value of the undervalued options outweighed the deterministic increase in 

“Using the CRSP equal-weighted market index the regression results were: 

R,, =0.0280-0.485 1 R,, + ehr. with a coefficient of determination of 0.0180. 
(4.75) ( - 1.70) 
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the value of the overvalued options or vice versa. Assuming that the hedge returns 

were drawn from a non-normal distribution, a Johnson (1978) modified t test, 

t ,oHN = fi[X + &/6?n + fi,%2/3s41/s, 

was performed, where i& denotes the third central sample moment. The Johnson t 

ratio was 4.08, and, at the 0.0115 percent significance level, the null hypothesis 

was rejected. The difference between the Student t and the Johnson t ratios, 
however, indicates that the hedge return distribution was slightly negatively 

skewed. 
With the null hypothesis of a zero hedge return rejected, the question arose 

whether investors could realize positive trading profits after transaction costs by 
enacting the costless arbitrage trading strategy. To answer this question, the effect 

of a proportional transaction cost rate, F, was simulated. At the beginning ofeach 
week each dollar of after-transaction-cost proceeds from the overvalued option 

portfolio sold short, $l(l -F), was assumed to be invested in the undervalued 
option portfolio, $l(l - F)/(l + F). At the end of the week, the long position was 
closed yielding proceeds !$( 1 - F)( 1 - F)( 1 + t-J/( 1 + F), and the short position was 

covered costing $l( 1 + F)( 1 + r,). The after-transaction-cost return on the hedge 
portfolio (r-j,) was, therefore, 

rL=(l-F)(l-F)(l+r,)/(l+F)-(l+F)(l+r,). 

The mean after-transaction-cost hedge return was assumed to be equal to zero, 
the mean realized returns of the undervalued and the overvalued option 
portfolios, 1.2515 percent and - 1.2137 percent, were substituted for r,, and r,, 

respectively, and the value of F* was computed.26 A proportional transaction 

cost rate of 0.616 percent was sufficient to eliminate all of the trading profits that 
could be realized by implementing the costless arbitrage activity. 

In Phillips and Smith (1980, p. 184) the average bid-ask spread for CBOE call 
options priced at more than $0.50 was reported as 4.5 percent ofthe average of the 

bid and ask prices. Assuming that the option prices used in the present test are 
halfway between the bid and ask prices, 27 the value of F*, 0.616 percent, can be 
thought of as one-half of the bid-ask spread as a percentage of price, and can be 

compared with one-half of the value of the Phillips and Smith estimate, 2.25 
percent. In sum, option market efficiency is soundly supported. The profits from 

26The solution for the maximum transaction cost rate was computed using the formula, F* = (1 + k 

--2,h/(l -k), h w ere k = (1 + R,)/(l + R,) and ii, and R, are the realized returns on the undervalued 
and overvalued portfolios. The remaining root of the quadratic equation did not yield a solution for 
F* between 0 and 1. 

“Again, it should be reminded that there may be a selection bias in the beginning of week prices 
since the model may have systematically picked out bid and ask prices as undervalued and overvalued 
options, respectively. See footnote 23. 
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buying undervalued options and selling overvalued options are insufficient to 
cover the market makers spread, let alone the remaining trading costs such 
as commissions and transfer fees. 

8. Summary and conclusions 

This study examines the pricing performance of three methods for valuing 
American call options on dividend-paying stocks. The methods include: (1) the 
simple approximation obtained by substituting the stock price net of the present 
value of the escrowed dividend into the Black-Scholes formula, (2) the Black 
approximation obtained by taking the higher of the Black-Scholes formula value 
using stock price net of the present value of the escrowed dividend and the Black- 
Scholes formula value using the time to ex-dividend as the time to expiration 
variable, and (3) the correctly specified equation for the American call option on a 
stock with a known dividend. Previous empirical investigations have focused on 
the simple approximation method, and have found several disturbing 
relationships between the degree of under- and over-pricing and the determinants 
of call value, for example, the standard deviation of stock return, the degree to 
which the option is in-the-money or out-of-the-money, and the option’s time to 
expiration. This study shows that these correlations are, for the most part, 
spurious in nature, induced by the approximation’s failure to account for the 
American call option holder’s early exercise privilege. 

The American call formula is shown to alleviate all of the dependencies except 
the relationship between prediction error and the standard deviation of stock 
return. Even when the American call formula is used, there remains a tendency of 
the model to underprice options on low-risk stocks and to overprice options on 
high-risk stocks. This phenomenon may be attributable to several sources: (1) 
non-stationarity of stock return standard deviation parameter, (2) the 
assumption of a known dividend, and (3) the assumption of zero tax rate 
differential between dividend and capital gain income. 

The American call formula also better describes the observed structure of call 
option prices than either of the approximations. Both the mean and the standard 
deviation of the relative prediction errors are lower. Since the cost of 
implementing the correct pricing equation is only slightly higher than the 
approximations, it should be used for pricing American calls and for computing 
implied standard deviations. If an approximation is desired, however, the results 
of this study indicate that the Black approximation is more accurate than the 
simpler method. 

Previous studies have also documented that weighted implied standard 
deviations are better predictors of future return volatility than historical 
estimates. In this study standard deviations based upon minimizing the sum of 
squared deviations of the observed call prices from the model’s prices are used. In 
a preliminary investigation the minimum sum of squares estimates were 
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compared with three weighted implied standard deviation measures, where the 

weights were: (1) equal, (2) the partial derivative of the model price with respect to 
stock return standard deviation, and (3) the elasticity of model price with respect 
to stock return standard deviation. The test results, not reported here, indicate 

that the minimum sum of squares method yields more accurate estimates of 
subsequent realized volatility than the weighted average methods. 

The volatility estimation methodology employed here also differs from 

previous studies in two other respects. First, contemporaneous volatility 
estimation and option valuation is avoided. The standard deviation parameter 
used in option valuation process is obtained by computing the implied standard 
deviation from the option prices in the previous week. In this way, the 

presumption that the model prices and, yet, does not price options correctly at a 
given instant is unnecessary, and single options written on a stock in a given week 

are retained in the sample. Second, an implied standard deviation is computed for 

each option maturity. Aggregating all options written on a stock presupposes 
that the market’s assessment of a stock’s volatility is independent of the length of 
time into the future for which it is estimated. Available empirical evidence 

suggests otherwise. 

This study also investigates Chicago Board Options Exchange efficiency using 
the American call option formula and a costless arbitrage hedging strategy. At the 

beginning of each week during the sample period January 17, 1975 through 
February 3, 1978, underpriced and overpriced options are hedged against one 
another in proportions such that a zero-risk, zero-investment option portfolio is 
formed. At the end of each week the position is closed, and the gain or loss is 

realized. The average weekly return using this trading strategy is 2.63 percent, and 
the null hypothesis of a zero expected return on the hedge portfolio is rejected. A 

proportional transaction cost rate of less than 1 percent, however, is sufficient to 
eliminate the trading profits, and the Chicago Board Options Exchange must be 
deemed to be an efficient market. 
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